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Abstract 

Cyber defense analysts face the challenge of validating machine generated alerts 

regarding network-based security threats. Operations tempo and systematic manpower 

issues have increased the importance of these individual analyst decisions, since they 

typically are not reviewed or changed. Analysts may not always be confident in their 

decisions. If confidence can be accurately assessed, then analyst decisions made under 

low‑confidence can be independently reviewed and analysts can be offered decision 

assistance or additional training. This work investigates the utility of using 

neurophysiological and behavioral correlates of decision confidence to train machine 

learning models to infer confidence in analyst decisions. Electroencephalography (EEG) 

and behavioral data was collected from eight participants in a two-task human-subject 

experiment and used to fit several popular classifiers. Results suggest that for simple 

decisions, it is possible to classify analyst decision confidence using EEG signals. 

However, more work is required to evaluate the utility of EEG signals for classification of 

decision confidence in complex decisions. 



v 

Acknowledgments 

I would like to offer my deepest appreciation to my faculty advisor, Dr. Brett Borghetti, 

for his guidance, encouragement, and patience. I would also like to thank my committee 

members, Dr. Gregory Funke and Dr. Laurence Merkle, for their support.  

 

 

       Graig S. Ganitano 

 

 

 



vi 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Acknowledgments ............................................................................................................... v 

List of Figures .................................................................................................................... ix 

List of Tables ..................................................................................................................... xii 

I. Introduction ...................................................................................................................... 1 

1.1 Problem Statement .............................................................................................. 1 

1.2 Research Questions and Hypothesis ................................................................... 2 

1.3 Methodology ....................................................................................................... 3 

1.4 Assumptions ....................................................................................................... 4 

1.5 Limitations .......................................................................................................... 5 

1.6 Contributions ...................................................................................................... 6 

1.7 Structure of the Document .................................................................................. 7 

II. Literature Review ........................................................................................................ 8 

2.1 Chapter Overview ............................................................................................... 8 

2.2 Current Research ................................................................................................ 9 

2.2.1 Drift Diffusion Model ...................................................................................... 9 

2.2.2 Neural Indicators of Decision Confidence ..................................................... 11 

2.2.3 Behavioral Indicators of Decision Confidence .............................................. 19 

2.2.4 Inference of Decision Confidence Through Machine Learning ..................... 20 

2.3 Research Gaps .................................................................................................. 28 

2.3.1 Experimental Designs ..................................................................................... 28 

2.3.2 Inferring Decision Confidence ....................................................................... 28 



vii 

2.4 Related EEG Research ...................................................................................... 29 

2.4.1 Random Forests .............................................................................................. 29 

2.4.2 Artificial Neural Networks ............................................................................. 31 

2.5 Summary ........................................................................................................... 36 

III. Methodology .............................................................................................................. 38 

3.1 Chapter Overview ............................................................................................. 38 

3.2 Background ....................................................................................................... 38 

3.3 Experiment ........................................................................................................ 39 

3.3.1 Participants ..................................................................................................... 40 

3.3.2 Random Dot Kinematogram Task .................................................................. 41 

3.3.3 Cyber Intruder Alert Testbed Task ................................................................. 45 

3.4 Electrophysiological Data Acquisition ............................................................. 50 

3.5 EEG Pre-Processing .......................................................................................... 53 

3.6 Analysis Strategy .............................................................................................. 54 

3.6.1 Event Related Potential Analysis ................................................................... 54 

3.6.2 Machine Learning ........................................................................................... 56 

3.6.3 Behavioral Analysis ....................................................................................... 67 

3.7 Summary ........................................................................................................... 68 

IV. Analysis and Results .................................................................................................. 70 

4.1 Chapter Overview ............................................................................................. 70 

4.2 Random Dot Kinematogram Task .................................................................... 71 

4.2.1 Event Related Potentials ................................................................................. 71 

4.2.2 Classification of Confidence .......................................................................... 72 



viii 

4.3 Cyber Intruder Alert Testbed Experiment Analysis ......................................... 84 

4.3.1 Behavior Results and Analysis ....................................................................... 84 

4.3.2 Event Related Potential Analysis ................................................................... 96 

4.3.3 Classification of Confidence .......................................................................... 97 

4.4 Summary ......................................................................................................... 108 

V. Conclusions and Recommendations ........................................................................ 110 

5.1 Conclusions of Research ................................................................................. 110 

5.2 Significance of Research ................................................................................ 112 

5.3 Recommendations for Future Research .......................................................... 113 

5.3.1 CIAT Data Segmentation ............................................................................. 113 

5.3.2 Machine Learning Improvements ................................................................ 114 

5.3.3 ECG and EOG Analysis ............................................................................... 116 

5.3.4 Experimental Design Changes ..................................................................... 116 

Appendix A: Pre-Experiment Questionnaire .................................................................. 118 

Appendix B: Post-Experiment Questionnaire ................................................................. 119 

Appendix C: General Cyber Alert Investigation Workflow Handout ............................. 120 

Bibliography .................................................................................................................... 121 

 

 



ix 

List of Figures 

Page 

Figure 2.1: Fully-Connected Neural Network .................................................................... 32 

Figure 2.2: Simple Recurrent Neural Network .................................................................. 34 

Figure 3.1: Experiment Sequence ...................................................................................... 40 

Figure 3.2: Example Random Dot Kinematogram ............................................................. 42 

Figure 3.3: Random Dot Kinematogram Task Sequence ................................................... 43 

Figure 3.4: CIAT Interface ................................................................................................. 45 

Figure 3.5: Example Decision Prompt ............................................................................... 47 

Figure 3.6: Data Acquisition Setup .................................................................................... 51 

Figure 3.7: International 10-20 System .............................................................................. 51 

Figure 3.8: RDK task EEG data timestamped (sec) to show stimulus presentation (7680) 

and participant response (12800). ................................................................................ 52 

Figure 3.9: EOG electrode placement ................................................................................ 53 

Figure 3.10: ECG electrode placement .............................................................................. 53 

Figure 3.11: Visually Rejected Epoch ................................................................................ 58 

Figure 3.12: Recursive Feature Elimination with Cross-Validation .................................. 60 

Figure 3.13: Example Fully connected Neural Network Architecture ............................... 61 

Figure 3.14: Example Convolutional-Recurrent Architecture ........................................... 62 

Figure 3.15: Confusion Matrix ........................................................................................... 63 

Figure 3.16: Receiver Operating Characteristic Curve ...................................................... 66 

Figure 3.17: Theoretical Model for Participant Behaviors ................................................. 67 

Figure 4.1: Example ERPs for Participant 4524 (Left) and Participant 7984 (Right) ....... 72 



x 

Figure 4.2: BACC for the Best Performing Models on the RDK Task.............................. 74 

Figure 4.3: AUC for the Best Performing Models on the RDK Task ................................ 75 

Figure 4.4: MCC for the Best Performing Models on the RDK Task ................................ 75 

Figure 4.5: Cohen’s Kappa for the Best Performing Models on the RDK Task ................ 75 

Figure 4.6: Confusion Matrices for the Best and Worst Performing Models .................... 77 

Figure 4.7: BACC for the CRNN fit on the RDK Task Data ............................................. 82 

Figure 4.8: AUC for the CRNN fit on the RDK Task Data ............................................... 82 

Figure 4.9: MCC for the CRNN fit on the RDK Task Data ............................................... 83 

Figure 4.10: Cohen’s Kappa for the CRNN fit on the RDK Task Data ............................. 83 

Figure 4.11: Number of Confident Observations versus Query Number ........................... 87 

Figure 4.12: Number of Confident Observations versus Difficulty ................................... 87 

Figure 4.13: Distribution of Tool Transitions for Confident and Unconfident Responses 88 

Figure 4.14 : Reaction Time versus Query Number .......................................................... 90 

Figure 4.15 : Reaction Time versus Difficulty ................................................................... 90 

Figure 4.16 : Distribution of Reaction Times for Confident and Unconfident Responses 90 

Figure 4.17 : Reaction Time versus Tool Transit ions ....................................................... 91 

Figure 4.18: Tool Transitions versus Query Number ......................................................... 92 

Figure 4.19 : Tool Transitions Versus Difficulty ............................................................... 93 

Figure 4.20: Tool Transitions versus Confidence .............................................................. 93 

Figure 4.21: Number of Correct Observations versus Query Number ............................... 95 

Figure 4.22 : Number of Correct Observations versus Difficulty ...................................... 95 

Figure 4.23: Distribution of Tool Transitions for Correct and Incorrect Responses.......... 95 

Figure 4.24: BACC for the Best Performing Models on the CIAT Task ........................... 98 



xi 

Figure 4.25: AUC for the Best Performing Models on the CIAT Task ............................. 99 

Figure 4.26: MCC for the Best Performing Models on the CIAT Task ............................. 99 

Figure 4.27: Cohen’s Kappa for the Best Performing Models on the CIAT Task ........... 100 

Figure 4.28: Comparison of BACC When Controlling for Query ................................... 104 

Figure 4.29: Comparison of AUC When Controlling for Query ..................................... 104 

Figure 4.30: Comparison of MCC When Controlling for Query ..................................... 105 

Figure 4.31: Comparison of Cohen’s Kappa When Controlling for Query ..................... 105 

Figure 4.32: BACC for the CRNN fit on the CIAT Task Data ........................................ 107 

Figure 4.33: AUC for the CRNN fit on the RDK Task Data ........................................... 107 

Figure 4.34: MCC for the CRNN fit on the CIAT Task Data .......................................... 108 

Figure 4.35: Cohen’s Kappa for the CRNN fit on the CIAT Task Data .......................... 108 

  



xii 

List of Tables 

Page 

Table 3.1: Control Variables .............................................................................................. 44 

Table 3.2: CIAT Tools and Descriptions ........................................................................... 46 

Table 3.3: Response Variables for the CIAT Experiment .................................................. 48 

Table 3.4: Test Matrix ........................................................................................................ 49 

Table 3.5: Independent Variables for the CIAT Experiment ............................................. 49 

Table 3.6: Class Distribution of Observations ................................................................... 56 

Table 3.7: Set of Testable Hypothesis ................................................................................ 68 

Table 4.1: Electrodes and Latencies of Observed Differences in ERPs ............................ 72 

Table 4.2: Mean Performance of Frequency Band Models for the RDK Task .................. 73 

Table 4.3: Comparison of RDK Single Band Models to Leave one-band out Models with 

Respect to Highest Perfromance and Highest Perfromance Drop ............................... 79 

Table 4.4: Intersection of Salient Features Across LR, LDA, and RF Models for the RDK 

Task.............................................................................................................................. 80 

Table 4.5: Mean Performance of the CRNN Models for the RDK Task ........................... 81 

Table 4.6: Descriptive Statistics for the CIAT Behavioral Data ........................................ 85 

Table 4.7: Mixed Effects Logistic Regression Model for Confidence ............................... 89 

Table 4.8 : Linear Mixed Model for Reaction Time .......................................................... 91 

Table 4.9 : Linear Mixed Model for Tool Transitions ....................................................... 94 

Table 4.10: Mixed Effects Logistic Regression Model for Correctness ............................ 96 

Table 4.11: Mean Performance of Frequency Band Models for the CIAT Task ............... 97 



xiii 

Table 4.12: Comparison of CIAT Single Band Models to Leave one-band out Models with 

Respect to Highest Perfromance and Highest Perfromance Drop ............................. 101 

Table 4.13: Salient Features Across LR, LDA, and RF Models for the CIAT Task ....... 101 

Table 4.14: Mean Performance of the CRNN Models for the CIAT Task ...................... 106 

 

 

 

  



1 

CONFIDENCE INFERENCE IN DEFENSIVE CYBER OPERATOR DECISION 

MAKING 

I. Introduction 

Humans and computers each have inherent strengths and weaknesses. Computers 

can outperform humans in tasks such as sorting and searching through large amounts data 

and performing computations quickly and correctly, but struggle with the uncertainty and 

ambiguity of decision-making as well as adapting to new or unexpected situations. 

Humans on the other hand, excel in situations that require understanding context and are 

able to adapt to new situations with greater success. Because the combined strengths of 

humans and computers complement their individual weaknesses, researchers have devoted 

their attention to the concept of human-machine teaming. 

A key component of human-machine teaming is the ability of a machine to assess a 

human operator’s ability to carry out their job at a particular moment in time, known as 

Operator Functional State Assessment (OFSA) [1]. If a machine can assess and understand 

an operator’s state, it can make better decisions and ultimately drive human-machine team 

performance towards an optimal level. The focus of this research is on a subcategory of 

OFSA - inferring operator decision confidence, particularly in the realm of cyber defense. 

1.1 Problem Statement 

Effective cyber defense currently relies heavily upon human operators, colloquially 

know as cyber defense operators. One critical role played by cyber defense operators is the 

network analyst. These operators work collaboratively with computer algorithms to 

identify and respond to malicious activity and policy violations. However, the alerts 
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generated by these algorithms do not always correspond to an actual cyber threat [2], and 

so operators face the challenge of determining the validity of these alerts as part of their 

regular operations. Once an operator has committed to a decision about the validity of an 

alert, due to operations tempo and manning there is usually no manpower remaining for 

quality assurance activities, meaning an incorrect decision could have catastrophic 

consequences for the corresponding network and host systems. Since decisions have an 

associated level of confidence, if confidence could be accurately inferred then it could 

potentially be used to identify operators in situations of low confidence. Assistance could 

then be provided in the form of investigation review, additional monitoring by more 

experienced cyber operators, and tailored training experiences based on observed decision 

confidence patterns from previous investigations. 

1.2  Research Questions and Hypothesis 

This study attempts to fill the current research gap of using neural and behavioral 

correlates of decision confidence in combination with machine learning techniques to infer 

confidence in a simple decision and extend the results to more complex decisions with 

emphasis on the types of decisions made by cyber defense operators. The following 

research questions focus on these goals: 

RQ1. Can electrophysiological features be used in combination with machine learning 

techniques to infer decision confidence in a simple decision with a performance 

greater than chance? 
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Hypothesis: Machine learning models will be able to learn the neural correlates of 

decision confidence and thus be able to infer decision confidence in a simple 

decision with a performance greater chance. 

RQ2. What are the salient electrophysiological features for inferring decision confidence 

in a simple decision? 

Hypothesis: Changes in power in the five traditional EEG frequency bands (alpha 

in particular) will be prominent features for inferring decision confidence. 

RQ3. Can behavioral features be used in combination with machine learning techniques 

to infer decision confidence in a complex decision with a performance greater than 

chance? 

Hypothesis: Machine learning models will be able to learn correlations between 

decision confidence, reaction time, and information seeking and thus be able to 

infer decision confidence in a complex decision with a performance greater than 

chance. 

RQ4. Are the salient electrophysiological features for inferring decision confidence the 

same for both simple and complex decisions?  

Hypothesis: Features identified as salient for a simple decision will still encode 

important information that can be used to infer decision confidence for complex 

decisions. 

1.3 Methodology 

A two-task human-subject experiment was designed in which electrophysiological 

and behavioral data was recorded for eight participants. The first task used in this 

experiment aimed at measuring electrophysiological data associated with confident and 
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unconfident simple decisions in a motion discrimination task. For this task, participants 

were presented with a series of random dot kinematogram (RDK) stimuli [3] and had to 

decide whether the global direction of dot motion for each stimulus was to the left or to 

the right. The next task aimed at measuring electrophysiological and behavioral data 

associated with the types of complex decisions made by cyber defense operators in their 

operational environment. The investigation was conducted using a modified version of the 

Cyber Intruder Alert Testbed, a synthetic task environment that simulates typical network 

intrusion detection tasks [2]. For this task, participants investigated 30 cyber-alerts of 

varying difficulty with the goal of determining the validity of each alert based on 

information available from various tools. For each task, the electrophysiological data were 

transformed into both time and frequency domain features and used to fit machine 

learning models of varying levels of flexibility for evaluation and comparison of both 

model performance and feature salience. Behavioral data from the cyber investigation was 

explored in order to identify patterns of behavior suitable as features for decision 

confidence inference as well as to provide insight into misclassifications made by models 

fit using the electrophysiological data. 

1.4 Assumptions 

In order to answer the proposed research questions, the following assumptions 

about the experiment design were made: 

 Participants have no knowledge of the RDK stimulus order or alert content and have 

not been informed by a past participant prior to participating in the experiment. 
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 Participants are willing to assess each alert based on evidence accumulated during 

their investigation. 

 Participants will seek to maximize their score by selecting the “I Don’t Know” option 

instead of guessing for RDK stimuli and alerts in which they do not know the answer.  

 Brain activity associated with confident and unconfident decisions can be detected 

using electrophysiological measurements. 

1.5 Limitations  

Participants for this study were recruited solely from the Air Force Institute of 

Technology.  Eight volunteer participants (all male) between the ages of 21-31 with a 

mean age of 24.7 and a standard deviation of 3.60 were recruited. All participants were 

United States active duty military personnel and held at least a bachelor’s degree in 

engineering and computer science fields. Due to the sampling bias introduced by the 

recruiting process, it is possible the results of this study will not generalize to a more 

diverse population. 

Each experiment session had a strict two-hour time limit. To complete the 

experiment within this constraint, the experimental design only allowed for collection of 

440 observations for the first task and 120 observations for the second task, per 

participant. Several issues arise when dealing with small datasets such as these. It may not 

be possible to split the dataset into training, validation, and test sets such that all sets 

follow the same probability distribution. In such cases, the validation set may not 

optimally guide the parameter search and the test set may not give a meaningful estimate 

of model generalization. Small datasets also increase the risk of overfitting. Reducing 
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model complexity can reduce overfitting, however this also limits the types of classifiers 

that can be utilized. 

It was confirmed that during experimentation, the electrophysiological data 

acquisition system was periodically malfunctioning. The extent to which the 

malfunctioning equipment impacted the integrity of the data is unknown. Due to schedule 

constraints and participant availability, data collection on a replacement system did not 

take place.   

1.6 Contributions 

This work builds upon the research on decision-making and decision confidence 

by investigating the feasibility of machine learning models trained on behavioral and 

electrophysiological features as a means for inferring decision confidence for both simple 

and complex decisions. Specifically, this research was the first to explore decision 

confidence inference in a RDK motion discrimination task using both linear and non-

linear machine learning models trained on electroencephalography (EEG) data. This work 

also represents the first to attempt decision confidence inference in complex decisions 

using the same techniques. For machine learning models fit using data from the RDK task, 

the best performing model for each participant exceeded classification performance 

greater than random chance with respect to four performance metrics. Additionally, 

frequency domain information thought to discriminate between levels of confidence were 

identified as important features in over half the participants. Performance of models fit 

using electrophysiological data from the cyber investigation task appeared to exceed 

random chance. However, after controlling for unintended effects of the experimental 
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design, the use of EEG was observed to provide little utility towards decision confidence 

inference. This observation highlights the importance of adhering to a set of standards 

when conducting a performance evaluation of machine learning models, as sole reliance 

on standard performance metrics can lead to inflated results. 

1.7 Structure of the Document 

The remainder of this document is structured into four chapters. Chapter 2 

provides a thorough review of present literature focusing on neural and behavioral 

representations of decision confidence and their salience for inferring confidence in future 

decisions using machine learning. Since little research has been conducted using machine 

learning for decision confidence inference, this is followed by a review machine learning 

approaches for inferring other types of cognitive activity. Chapter 3 describes the details 

of the two-task human-subject experiment design as well as the techniques used to analyze 

the behavioral and physiological data collected during the experiment. Chapter 4 presents 

the results of the analysis of the behavioral and physiological data. Finally, Chapter 5 

summarizes the significant findings of this research and discusses areas for future work. 
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II. Literature Review 

2.1 Chapter Overview 

Human beings possess the innate ability to subjectively evaluate their performance 

on a perceptual task. Even without being explicitly told the correct answer, they can 

identify the possibility of having made an error and are able to express a level of 

confidence in their decision. Over the past few decades researchers have invested a 

substantial amount of effort into investigating the neural and behavioral basis underlying 

the decision-making process [4]. However, very little research has been done regarding the 

neural representation of decision confidence.  Experimentation has focused solely on 

simple two-choice decisions that are made in a matter of seconds, which raises the 

question of whether the results of such experimentation extend to more complex decisions 

such as those made by cyber defense operators during a cyber-investigation. 

 In the following sections, we review literature that has investigated the neural and 

behavioral representations of subjective confidence in cognitive tasks. Subsequently, we 

highlight literature that links these representations to the problem of inferring confidence 

in future decisions utilizing machine learning techniques. Lastly, we identify gaps in the 

current body of research and potential avenues for filling these gaps based on results in 

research on inferring cognitive activities other than decision confidence.  
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2.2 Current Research 

2.2.1 Drift Diffusion Model 

The primary model of decision-making upon which experiment designs 

investigating neural and behavioral representations of decision confidence are based is 

known as the drift-diffusion model (DDM). The DDM models the decision process for 

decisions that meet the following assumptions [5]: 

1) The decision involves two choices. 

2) The decision requires a single-stage decision process (as opposed to multi-stage 

processes that may be involved in reasoning tasks). 

3) The decision is made quickly (mean reaction time of only a few seconds). 

In the DDM, each of the two available choices has a corresponding response boundary. 

The DDM models decision-making as a noisy process where at each time step, evidence is 

accumulated for one of the two choices until a response boundary is reached at which 

point the decision is made in favor of the corresponding choice. More specifically, the 

decision variable 𝑣𝑡 is updated according to  

𝑣𝑡 = 𝑣𝑡−1 + 𝛿 + 𝑐𝑊   

 where 𝛿 is a linear drift term that encodes the rate of evidence accumulation, and 𝑐𝑊 is 

Gaussian noise with mean zero and variance 𝑐2. A decision is made when 

−𝜃 > 𝑣 > 𝜃  

where 𝜃 is a fixed deviation from zero. Decision confidence is then thought to scale with 

the product of 𝛿 and 𝜃 [6]. Confidence reporting in experiments examined in this work 

take one of two forms: participants reporting confidence that they made the correct choice 
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or reporting confidence that they made an error [6]. The latter form, known as error 

monitoring, also fits within the DDM framework. In this case errors are detected as a re-

crossing of a single response boundary or as a successive crossing of both response 

boundaries [7].  

Current research on neural and behavioral representations of decision confidence has 

almost exclusively focused on simple two-choice decision tasks that can be modelled 

using the DDM. The following are examples of such tasks: 

 Random Dot Kinematogram (RDK) Task: Participants are shown a stimulus in the 

form of dots in an aperture, where a percentage of dots move together in the same 

direction and the remaining dots move randomly. Participants must make a choice 

between the two possible directions of coherent dot motion. 

 Grating Orientation Task: Participants are shown a stimulus in the form of a grooved 

surface, with gratings aligned vertically or horizontally. Participants must make a 

choice between the two grating orientations. 

 Image Discrimination Task: Participants are shown a stimulus in the form of an image 

belonging to one of two categories. Participants must choose which category the image 

belongs two. 

In contrast to these simple two-choice decision tasks, complex decisions such as those 

made by cyber defense operators during a cyber-investigation, often violate the 

assumptions listed above and represent a gap in current research. 
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2.2.2 Neural Indicators of Decision Confidence 

A large portion of research into understanding the neuronal backings for the 

decision-making process and the representation of decision confidence within this process 

utilizes Electroencephalography (EEG). EEG is a measurement technique in which 

electric brain potentials, resulting from electrochemical signals being passed between 

neurons, are noninvasively measured via electrodes placed on the head [8]. When large 

populations of neurons are synchronously active, the small electric fields generated by 

each individual neuron sum together resulting in a field strong enough to propagate 

through several anatomical layers including the brain tissue, skull and skin [9]. Within the 

reviewed literature, two techniques dominate the analysis of EEG data for investigation of 

neural representations of subjective confidence: event related potential (ERP) analysis and 

time-frequency analysis. 

2.2.2.1 Event Related Potentials 

ERPs are very small positive or negative voltage deflections that appear in 

response to an applied stimulus. When EEG data is segmented and time-locked to the 

stimulus event (known as epoching the data,) if the epochs are aligned and averaged at 

each time point, these deflections become clear. Because the noise fluctuations are 

randomly distributed around zero, by taking the average across all epochs, the 

combination of the individual noise contaminating each signal tends to cancel out, 

approaching zero as the number of epochs increases [9]. The waveform that results from 

this process is the ERP, which can be further divided into distinct components that reflect 

deviations from a pre-event baseline. The peak amplitudes and latencies of these ERP 
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components are thought to index discrete sensory and cognitive processes that unfold over 

time in response to a class of events [10]. ERP components that have been shown to 

discriminate between different levels of confidence include P300 (P3), error-related 

negativity (ERN), and error-related positivity (Pe). However, since the process to extract 

the ERP components collapses all trials into a single observation, ERPs are generally not a 

suitable feature for the classification of decision confidence using machine learning 

discussed in 2.2.4. 

2.2.2.1.1 P300 

The P300 or P3 event-related component is a positive deflection that occurs when 

a subject detects an informative task-relevant stimulus, with a typical peak latency of 

300 ms and is thought to represent the transfer of information to consciousness [11]. 

Kerkhof investigated the P3 ERP component manifesting from decisions on signal and 

non-signal presentations in a threshold detection task [12]. EEG data was collected from 

six participants who were asked to determine whether or not an auditory stimulus in the 

form of 3 seconds of wide-band white noise contained a 100 ms duration of a 1000 Hz 

sinusoidal signal. Participants responded after the presentation of the stimulus by pressing 

one of eight buttons, each indicating a level of confidence ranging from high confidence 

that the sinusoid was present to high confidence that it was not. Several multivariate 

analyses were conducted on the preprocessed EEG data. The results of these analyses 

indicate that the level of decision confidence is positively correlated with the quality of the 

associated P3s and negatively correlated with the length and the variability of the 

associated P3 latencies [12]. 
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2.2.2.1.2 Error-Related Negativity 

The ERN is a negative ERP component over the frontocentral region, peaking 

between 60-120ms following an incorrect response [7]. Selimbeyoglu et al. examined the 

ERN as a neural correlate of subjective confidence levels with emphasis on subjective 

uncertainty in an attempt to reveal the differences in processing of perception and 

response level errors and to discriminate between different confidence levels [13]. EEG 

data was collected from seventeen participants during a circle discrimination task designed 

to create difficulty during the stimulus processing and response selection of the decision-

making process. Each participant was shown two circles of similar sizes and had to report 

the larger of the two. If the participant was unsure that their answer was correct or certain 

that they gave an incorrect answer, they reported their confidence level. The EEG data was 

partitioned according to the three confidence levels corresponding to participants being 

certain of giving a correct answer, being certain of giving an incorrect answer, and being 

uncertain. ERN was quantified as the mean value between 0 and 100 ms after the 

response. Statistical tests were carried out through a repeated measures-ANOVA. ERN 

amplitude was found to be statistically different between the three confidence levels, with 

amplitude being most negative when a participant was certain they made an error and least 

negative when they were certain their given response was correct [13]. 

2.2.2.1.3 Error-Related Positivity 

The Error-related positivity or Pe event-related component is a positive deflection 

occurring 200–400 ms after giving an incorrect response and reflects a representation of 

conscious error awareness in that the amplitude of the waveform is modulated by the 

degree of awareness that an incorrect response was given [7]. Boldt and Yeung 
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investigated whether Pe varied in a graded way with subjective ratings of decision 

confidence given by participants in a dot count perceptual decision task [14]. In each trial, 

participants were shown two arrays of dots for 160 ms and asked to determine which array 

contained more dots. Participants had 1520 ms post stimulus to report their answer and 

were also asked to report their confidence level using a qualitative 6 level scale. EEG 

analysis focused on the 600 ms interval between which the participant gave their answer 

and the subsequent appearance of the confidence scale. Pe amplitude was taken as the 

difference between error and correct-trial waveforms manifesting in the interval of 250 -

350 ms post response. Analysis of the ERP waveforms representing the 6 levels of 

confidence reported in the task revealed statistically significant differences between the Pe 

amplitude for each pair of confidence levels, strongly suggesting that Pe amplitude is 

modulated as a function of decision confidence [14]. 

2.2.2.2 Time-Frequency Analysis 

Neural oscillations contain a wealth of information as evidenced by countless 

studies over many decades linking specific patterns of oscillations to perceptual, cognitive, 

motor, and emotional processes [5]. Neural oscillations contain multiple frequencies that 

can be separated using signal-processing techniques such as the Fourier transform and 

wavelet transform and are commonly grouped into bands that are defined by 

logarithmically increasing center frequencies and frequency widths [6]. These bands 

include delta (2-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-

80 Hz). Of these frequency bands, alpha has shown particularly promising results as a 

neural indicator of decision confidence. Additionally, because these techniques reduce the 
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dimensionality of the signal down to only a few frequency components, these components 

may be more useful features for classification via machine learning than the original 

signal. 

2.2.2.2.1 Fourier and Short-Time Fourier Transform 

The Fourier transform of a signal 𝑥(𝑡) is given by 

𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡  
∞

−∞

 
 

The power spectrum of 𝑥(𝑡) is given by 𝑆(𝑓) = |𝑋(𝑓)|2 and describes the distribution of 

power into the frequency components that make up 𝑥(𝑡) [15]. There are two major 

limitations of using the Fourier transform for EEG time-frequency analysis. First, the 

Fourier transform obscures the temporal dynamics in the frequency structure of the data. 

Second, the Fourier transform assumes that the signal 𝑥(𝑡) is stationary, which is clearly 

violated by the dynamic properties of the brain reflected in EEG data. These limitations 

are addressed by a simple extension known as the short-time Fourier transform (STFT). 

The STFT uses a window function 𝑤 which is nonzero for a short period of time to 

compute an approximation of the Fourier transform and is given by  

𝑋(𝜏, 𝑓) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡  
∞

−∞

 
 

The window function is typically symmetric and has unit 𝐿2 norm. Common windows 

include the Hann window, Hamming window, and Gaussian window. The power spectrum 

of 𝑥(𝑡) is now a function of time and computed as 𝑆(𝑡, 𝑓) = |𝑋(𝑡, 𝑓)|2.   
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2.2.2.2.2 Wavelet Transform 

Though the STFT addresses issues with frequency decomposition of EEG data by 

the Fourier transform, it is not without its own limitations. One issue with the STFT is that 

it uses the same window function for all frequencies. If the size of the window is large, 

resolution in the time domain is degraded and if the size of the window is small, resolution 

in the frequency domain is degraded. An alternative to the STFT is the wavelet transform  

𝑊(𝑠, 𝑡0) = ∫ 𝑥(𝑡)𝜓𝑠,𝑡0 
∗ (𝑡)𝑑𝑡

∞

−∞

 
 

where 𝜓(𝑡) is a continuous function in both the time and frequency domain called the 

mother wavelet, * denotes the complex conjugate, s is the timescale and 𝑡0 is the center of 

the window. Wavelets are generated using the mother wavelet  

𝜓𝑠,𝑡0
(𝑡) =

1

√𝑠
𝜓0 (

𝑡 − 𝑡0

𝑠
) 

 

and are simply translated and scaled versions of the mother wavelet. From the equation for 

the mother wavelet, it is clear that when the local area contains a high frequency, the 

wavelet gets shorter, and when the local area contains a low frequency, the wavelet gets 

longer [16]. 

 

2.2.2.2.3 Alpha Oscillations 

Alpha oscillations are neural oscillations in the frequency range of approximately 8 

and 12 Hz. These oscillations occur over the entire scalp but are typically maximum in 

amplitude in the parieto-occipital areas [17]. Alpha oscillations have been implicated in 

perceptual uncertainty and difficulty in decision making [18]. Several studies investigated 

how decision confidence modulates neural signals in individuals who explicitly reported 

their subjective confidence in perceptual decision tasks [19], [20], [21]. A common result 
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between the studies was that confidence was strongly encoded in alpha oscillations. In 

particular, for decision falling under the assumptions of the DDM, alpha power is lower 

for decisions made with high confidence and alpha power is higher for decisions made 

with low confidence. 

 Kubanek et al. collected EEG data from 10 participants during a perceptual 

decision task [19]. For this task, participants fixated on a monitor that displayed a picture 

of a joystick on the right half of the screen and a picture of an eye on the left. While 

fixating on the monitor, participants were presented with a stereo auditory stimulus in the 

form of clicks. If more clicks were heard in the right ear than the left, participants pressed 

a button with their right hand. If more clicks were heard in the left ear than right, 

participants made an eye movement towards the icon of an eye. After making their choice, 

participants were presented with a prompt asking them to rate their confidence level in a 

binary manner. Time-frequency analysis was carried out by using an autoregressive model 

of order 15 to estimate the power spectral density for each frequency from 1 to 80 Hz. The 

EEG signals were evaluated in 300 ms windows sliding through the trial in 30 ms 

timesteps. The neural representation of choice confidence was investigated using a 

regression model where power at a given time and frequency was regressed on confidence, 

where confidence is a two-level dummy variable for sure or unsure. This regression was 

carried out for each timestep and frequency. The p-values of the confidence effect for each 

regression were compared, showing that the effect was particularly significant in the alpha 

band for button press choices. Further analysis revealed a negative correlation between 

alpha and confidence. The authors interpreted these results as alpha reflecting a variable 

related to a degree of a subject’s confidence [19]. 
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 Graziano et al. employed a partial report paradigm designed to separate the sensory 

encoding stage that begins with stimulus presentation, from the retrieval stage that begins 

after presentation of the response cue [20]. For this task, participants first fixated on a 

cross located in the center of a 19-inch screen for 1000 – 1500 ms. A stimulus in the form 

of an 8-letter circular array around the cross was then presented for 153 ms. Following a 

750 ms delay, an array of 8 dots with exactly one being red was presented in the same 

position as the 8-letter array for 153 msec. After waiting for another 1000 ms, participants 

had to report the letter that was in the same position as the red dot, as well as their 

confidence in their decision on a 0-100 scale. EEG data was divided into two periods 

corresponding to the encoding and retrieval stages and transformed to the frequency 

domain for each trial using a Fourier transform. The authors observed that trials in which 

the participant was confident were accompanied by a lower alpha power during the 

encoding phase [20]. 

Samaha et al. measured prestimulus alpha power as a trial-by-trial index of cortical 

excitability through a two-choice orientation discrimination task [21]. Participants were 

tasked to identify whether sinusoidal luminance gratings embedded in random dot noise 

presented within a circular aperture were rotated left or right of vertical. Each trial began 

with a 500 – 1000 ms fixation period, followed by stimulus presentation for 33 ms. After a 

600 ms waiting period post-stimulus presentation, participants were then asked to report 

their confidence as one of four levels. Time-frequency analysis was performed on the 

preprocessed EEG data using wavelet transformation. Data from each channel and trial 

were convolved with a family of complex Morlet wavelets from 2-50 Hz in Hz steps with 

wavelet cycles increasing linearly as a function of frequency. A non-parametric single-trial 
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multiple regression approach was used to relate single-trial estimates of power across time 

and frequency to decision confidence. Additionally, a binning analysis in which decision 

confidence was binned into 10 deciles according to prestimulus alpha power levels 

obtained from a fast Fourier transform (FFT) of prestimulus data was conducted. Both the 

regression and binning analysis revealed a strong negative relationship between 

prestimulus alpha power and confidence ratings [21]. 

2.2.3 Behavioral Indicators of Decision Confidence 

Engelke et al. analyzed the relationship between quality scores, reaction times, and 

confidence ratings in a subjective image quality experiment [22]. Fifteen participants were 

tasked to rate the quality of 80 images and report the confidence level in their decision 

using a five-level Likert scale. The authors tested the hypothesis that confidence of a 

human observer when rating the quality of an image is strongly related to the response 

time of the quality rating and expected that images that were harder to judge to be 

associated with longer response times. They found that reaction time was strongly 

negatively correlated with confidence ratings: reaction times were shorter when 

participants had high confidence in their quality score and longer when they had low 

confidence. Similarly, Robitza and Hlavacs investigated the relationship between 

participant rating times and self-reported confidence in a subjective video quality 

experiment [23].  For this experiment, 27 participants were tasked to rate the visual quality 

of 135 ten-second video clips and give their confidence about their decision using a 

five-level Likert scale. The authors investigated average quality rating time as a function 
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of confidence score which showed a strong negative correlation between rating times and 

subjective confidence. 

Boldt and Yueng investigated the relationship between subjective confidence and 

information seeking in two perceptual decision tasks of varying difficulty [24]. More 

specifically, the authors tested the hypothesis that subjective confidence predicts 

information seeking in decision-making. In their study, the authors created two conditions 

which were matched for accuracy but differed in subjective confidence. It was found that 

confidence tended to be lower in a condition with high evidence variability relative to a 

condition with low evidence mean. Another significant finding was the observation that a 

participant’s decision to seek more information tracked subjective confidence, but not 

objective accuracy. It was observed that participants consistently chose to use the 

available means to seek information more often when evidence variability was high than 

when evidence mean was low. This relationship was observed in both experiments, each 

consisting of a different experimental setup and task difficulty. 

2.2.4 Inference of Decision Confidence Through Machine Learning 

A small subset of studies moved beyond investigating the behavioral and neural 

encoding of subjective confidence and instead examined whether or not these 

representations could be used to predict a subject’s confidence level. Techniques for 

predicting qualitative responses, such as discrete categories of confidence, fall into the 

machine learning problem known as classification [25]. Specifically, classification is the 

problem of identifying the class membership of a new observation based on a training set 

of data containing observations whose classes are known. In the context of estimation of 
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decision confidence, the classes are the different levels of confidence as defined by the 

specific experiment, and the observations are any of the neural representations discussed 

in the previous section. 

2.2.4.1 Logistic Regression 

Logistic regression is a parametric method of classification used to fit a linear 

model that directly predicts the posterior probability that a sample 𝑋 = 𝑥 belongs to class 

𝑘. However, instead of invoking Bayes’ theorem and generating probabilistic models from 

prior information, logistic regression generates boundaries that maximize the likelihood of 

the data from a set of class samples [26]. In the case of binary classification, the logistic 

regression model is given by 

Pr(G = 1|X = x) =
e𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+⋯+𝛽𝑃𝑋𝑝
 

 

To fit the model, the method of maximum likelihood is utilized to estimate the regression 

coefficients. The coefficient estimates are chosen to maximize the likelihood function 

ℓ(β) = ∑{𝑦𝑖𝛽
𝑇𝑥𝑖 − log(1 + 𝑒𝛽𝑇𝑥𝑖)} 

𝑁

𝑖=1

 
 

Shih et al. investigated whether a combination of EEG, pupil dilation, heart rate, 

and response time data collected during a simulated crew station experiment could be used 

to estimate decision confidence and accuracy [27]. The authors conducted their 

experiment using the Small Team Reconnaissance and Urban Surveillance Missions 

(STRUM) multi-attribute task battery (MATB), which was designed to emulate drone 

operator workload. The STRUM experiment setup consists of a two-seat, multi-screen 

crewstation with camera feeds, satellite maps, and text message feeds. The experiment 
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focused on visual and auditory subtasks. For the visual subtask, an icon tinted in one of 

four colors was briefly shown in one of the four quadrants of the satellite map screen. 

After one to three seconds, the subject was presented with a cue asking them to identify 

either the quadrant the icon was located in or its color. The subject could either answer 

within six seconds or choose to skip. For the auditory subtask, a sound was played from 

one of three locations and the subject was asked to identify the direction in which the 

sound came. Once again, the subject could either answer within six seconds or choose to 

skip. Responses were scored as +2 for correct, -2 for incorrect, -1 for skipped, -2 for 

missed, and total score was transformed into monetary compensation after the experiment. 

Neural and physiological data was collected utilizing 205-channel EEG, 2-channel 

electrooculography (EOG), and a custom head-mounted eye tracker. Response time was 

measured as the time from presentation of cue to the time of response by the subject. EEG 

data was windowed based on the onset of the stimulus and on the onset of the cue, 

resulting in six 250 ms windows. Pupil data was windowed around the stimulus resulting 

in 5 two-second windows. Average heart rate was computed over a time period of 6 

seconds around the stimulus. Response time was used directly. Logistic regression models 

were fit using every combination of the features above. Classification using multiple 

features was done using a two-layer hierarchical logistic regression. The EEG and pupil 

data were used as features for the first layer which output scores that discriminated the 

data between whether the subject would be correct in their decision or skip making a 

choice or whether they were correct or not. These scores along with heart rate and 

response time were then used at the second layer to output a final score for discriminating 

the data between conditions. The best performing models achieved an average accuracy of 
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70-75% and included the stimulus-windowed EEG, cue-windowed EEG, and pupil 

features. It was also noted that for both the audio and visual subtasks, the EEG data 

windowed on the cue to respond best predicted correct vs. skipped conditions for the 

single-feature models [27]. An issue with the results presented in this study is that the 

distribution of observations with respect to class membership is not given. If 70-75% of 

the data represents a single class, then a naïve classifier which always predicts the 

majority class would achieve the same results.  

Based on their result that rating times were strongly negatively correlated with 

observer confidence, Robitza and Hlavacs investigated whether observer confidence could 

be inferred from rating time using a multinomial logistic regression model in which the 

confidence score was used as the ordinal dependent variable and rating time was used as 

the sole feature [23]. Before fitting the model, extreme outliers where rating times were 

over 10 seconds were removed. The authors observed that the probability of classifying an 

observation as one of the higher confidence classes decreased as rating time increased and 

that the probability of classifying an observation as one of the lower confidence classes 

increased as rating time increased. 

2.2.4.2 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a parametric method of classification that 

attempts to find linear combinations of features that best separates the groups of 

observations [26]. LDA models the class densities as multivariate Gaussian distributions 

given by 
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fk(𝑥) =
1

(2𝜋)𝑝/2|Σ𝑘|1/2
𝑒−

1
2

(𝑥−𝜇𝑘)𝑇Σ𝑘
−1(𝑥−𝜇𝑘)

 
 

where 𝜇𝑘 and Σ𝑘 are the mean and covariance matrix of class 𝑘 respectively and  

Σ𝑘 = Σ ∀𝑘. Optimal classification requires the posterior probability that a sample 𝑋 = 𝑥 

belongs to class 𝑘 be known. Given 𝜋𝑘 , the prior probability of class 𝑘, application of 

Bayes theorem gives the posterior as 

Pr(G = k|X = x) =
fk(𝑥)𝜋𝑘

Σ𝑙=1
𝐾 𝑓𝑙(𝑥)𝜋𝑙

 
 

In the case of binary classification of classes 𝑘 and 𝑙, it is sufficient to look at the log-ratio 

log
Pr(𝐺 = 𝑘|𝑋 = 𝑥)

Pr(𝐺 = 𝑙|𝑋 = 𝑥)
= log

𝑓𝑘(𝑥)

𝑓𝑙(𝑥)
+ log

𝜋𝑘

𝜋𝑙
 

                                                                           
= log

𝜋𝑘

𝜋𝑙
−

1

2
(𝜇𝑘 + 𝜇𝑙)

𝑇Σ−1(𝜇𝑘 − 𝜇𝑙)

+𝑥𝑇Σ−1(𝜇𝑘 − 𝜇𝑙)   

 

 

which is a linear equation in 𝑥 and implies that the decision boundary separating classes 𝑘 

and 𝑙 is also linear in 𝑥. This can be generalized for any pair of classes and so the decision 

boundary between any pair of classes is linear and corresponds to the linear discriminant 

function 

δk(𝑥) = 𝑥𝑇Σ−1𝜇𝑘 − 1/2𝜇𝑘
𝑇Σ−1𝜇𝑘 + log 𝜋𝑘  

with class membership determined by the decision rule 

G(x) = argmaxk𝛿𝑘(𝑥)  

Kubanek et al. applied their results discussed in 2.2.2.2.3 to predicting whether a 

subject was going to be sure or unsure of pressing a button [14]. The authors averaged the 

EEG alpha power over all channels in the period of statistical significance of the effect of 

confidence creating a single feature per observation that was input into an LDA classifier. 
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Their classifier achieved an accuracy of 0.60 using a hold-out test set. Like results 

presented by Shih et al. [27], distribution of observations with respect to class membership 

is not presented. 

2.2.4.3 Support Vector Machines 

Support Vector Machines (SVM) is a method of classification that can be used for 

both linearly and non-linearly separable data. Similar to LDA, SVM uses a separating 

hyperplane as the decision boundary that separates the two classes. The decision boundary 

is associated with a pair of hyperplanes that are parallel to it, with each passing through 

the datapoint nearest to it. The distance between these supporting hyperplanes is known as 

the margin. In the case where the data is linearly separable, the decision boundary is 

chosen so that it maximizes the margin. If the data is not linearly separable, a linear 

boundary may be obtained if the data is transformed to a higher dimensional space. The 

non-linear classification is done using a kernel function that replaces the computationally 

expensive inner product of the feature vectors in the higher dimensional space. 

Additionally, the hard-margin in the linear case is replaced by a tunable soft-margin which 

adjusts model flexibility [25]. 

Paul et al. sought to identify the neural patterns corresponding to actions with and 

without decision-making through classification of reference and decision trials in an 

instrumental reward-based learning task [28]. For this task, 13 participants were presented 

with a series of trials in which they chose between abstract visual images in order to 

accrue a small reward at the end of each trial. For reference trials, participants were 

presented a single image to select from, whereas they were presented two images for 
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decision trials. Each trial duration was approximately 4 seconds. The problem was 

formulated as a binary classification problem in which the two classes were whether the 

participant was making a decision or not. 64-channel EEG data was windowed on each 

trial and the mean amplitude over each 4 second window was computed for each channel, 

generating 64 features per trial for classification using SVM. On the individual subject 

level, average classification accuracy was reported as approximately 90%. Feature 

saliency analysis indicated that channels associated with the frontal areas of the brain were 

most important, consistent with the notion that these areas are implicated in the decision 

process [28]. 

2.2.4.4 Linear Spatial Integration 

Despite research backing several ERP components as a robust index of decision 

confidence, the trial-averaged ERP is not an appropriate feature for classification as it 

condenses the associated observations into a single one, leading to the unfavorable 

situation in which the number of features is much larger than the number of observations. 

Parra et al. propose integrating information over space as an alternative to the 

trial-averaging methodology of standard ERP analysis [29]. Specifically, the method uses 

logistic regression to find the optimal spatial weighting such that the resulting spatial 

distribution of electrode activity in a given time window maximally discriminates between 

two conditions of interest. After finding the optimal spatial weighting, the discriminating 

component is averaged over the dependent samples for each trial. The resulting value 

ranges from 0 to 1 which can be conceptualized as the probability that the condition of 

interest for that trial is the first condition [30]. Improvement in signal-to-noise ratio is 
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achieved in single trials because the ERP component amplitude is estimated as a spatially 

weighted average across electrodes for each trial in much the same way as conventional 

ERP analysis achieves a high signal-to-noise ratio through cross-trial averaging [29]. 

 Gherman and Philiastides utilized the spatial linear integration method to 

discriminate between certain versus uncertain trials to identify the temporal characteristics 

of the neural correlates of decision confidence during a binary, delayed-response task [31]. 

For each trial of the task, 19 participants had to determine whether a visual stimulus 

presented for 0.1 sec, displayed at one of three possible levels of sensory evidence, was 

either a face or a car and had 1 sec to indicate their response. Each trial began with a 

randomized delay between 1 and 1.5 sec and each stimulus presentation and response cue 

were separated by a randomized delay between 0.9 and 1.4. Correct responses were 

incentivized with monetary compensation and in a random half of the trials, participants 

were offered the option to opt out of giving a response for a smaller but sure reward. The 

spatial linear integration method was applied in the time range between 100 ms prior to 

and 1000 ms after the presentation of the stimulus. The optimal spatial weighting was 

identified for a 60 ms sliding training window centered in increments of 10 ms within the 

time range described above. Performance was assessed using the area under a receiver 

operating characteristic curve. The authors observed that the classifier’s performance 

gradually increased after 300 ms and was maximum at around 600 ms with an AUC of 

approximately 0.75 [31]. 

 Boldt and Yueng also trained a classifier on single-trial Pe amplitude using the 

spatial linear integration method to predict confidence on a single-trial level [14]. The 

authors’ goal was to assess whether a classifier that was trained to distinguish between 
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objectively correct and incorrect responses could also be used to predict levels of decision 

confidence on a holdout set of correct responses. The authors found that the Pe-trained 

classifier was predictive of fine-grained differences in correct-trial confidence, suggesting 

that information reflected by the Pe includes both graded certainty about having made an 

error as well as graded certainty of having made a correct response [14]. 

2.3 Research Gaps 

2.3.1 Experimental Designs 

Since the experimental designs in the surveyed research are based on decision-

making models like the DDM, it is no surprise that they inherit similar limitations.  It was 

previously stated that the DDM is only applicable to single-stage decisions in which the 

mean reaction times are less than 1000 to 1500 ms [5]. This limitation begs the question of 

applicability to the realm of the cyber analyst’s investigation of cyber alerts. The current 

body of research into decision confidence focuses solely on experimentation in which the 

decisions made by participants are discrete and forced to occur at a specific time. While 

experimental designs of this kind have been shown to produce EEG data that is convenient 

for analysis techniques such as ERP and time-frequency, it is currently unknown whether 

the results of conducting an EEG analysis on data generated in this manner will generalize 

to real-world decisions that unfold gradually as they are shaped by a continuous stream of 

sensory inputs.  

2.3.2 Inferring Decision Confidence 

Other than the studies previously mentioned, there is a lack of research into 

estimation of decision confidence utilizing its neural representations. In particular, despite 
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several studies identifying alpha power as robust index of decision confidence, there has 

been little research utilizing it as a feature for inferring decision confidence. Instead, 

existing studies have leaned on time series data windowed on events of interest as the 

feature of choice. The number of classification techniques utilized for inferring decision 

confidence was also extremely limited, with no research applying more recent machine 

learning approaches such as deep learning methods. 

2.4 Related EEG Research 

Though little research has been conducted with respect to applying machine 

learning approaches to inferring decision confidence from EEG data, there exists a large 

body of research which uses machine learning to infer other cognitive processes. The 

following is a review of machine learning approaches that have been successful in EEG 

analysis in other domains, which may be applicable to inferring decision confidence.   

2.4.1 Random Forests 

Random forest models are an ensemble learning method for classification in which 

the ensemble consists of many decision trees [32]. A decision tree algorithm recursively 

partitions the data into smaller subgroups until some criteria is met. At each split, the 

algorithm finds the best feature in the dataset to partition the data into subsets which have 

similar values for that feature. A random forest model is created by growing many 

decision trees trained on a random subset of the available features. By using a random 

subset of the available features, the set of trees are decorrelated, resulting in better 

generalization of the models. The overall prediction of the model is determined from a 

function of the individual predictions made by the decision trees – for example, a vote for 
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the most prevalent class or a computation of the regression mean of the values predicted 

by the trees.  

Random forest models trained using EEG data have performed exceptionally well 

in the area of estimating pain experienced by humans. Vijayakumar et al. developed a 

robust and accurate cross-participant machine learning approach to quantify tonic thermal 

pain in healthy human subjects using a random forest model trained using time-frequency 

wavelet representations of independent components obtained from EEG data [33]. 64-

channel EEG data was collected from twenty-five participants and was concatenated 

across all participants. Each datapoint corresponded to one of ten classes of pain and the 

overall distribution of classes was non-uniform. The EEG data was subjected to full rank 

Independent Component Analysis (ICA) to enable multivariate analysis by focusing on the 

fraction of source information available at each scalp. Each independent component was 

transformed using the continuous wavelet transform and Gabor wavelet. The power 

spectral density was computed for 60 points corresponding to a frequency range of 2 - 80 

Hz. Training was done using leave-one-out cross-validation and tested on data from a 

hold-out test participant. Due to the non-uniform distribution of pain classes, balanced 

classification accuracy, F-score, and Matthew’s correlation coefficients were used as 

performance metrics for assessing model performance. The best performing model 

achieved a balanced classification accuracy of 0.89, the highest among existing classifiers 

for this dataset. In addition to classification, the authors investigated the salience of each 

frequency band and found the Gamma band to be most important. 
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2.4.2 Artificial Neural Networks 

Artificial neural networks (ANN) are machine learning models inspired by the 

biological neural networks of the brain [34].  ANNs specializes in learning complex data 

representations that are expressed in terms of other, simpler representations. Beginning at 

the raw data representation level, this layered representation is obtained through simple 

non-linear transformations from one level of representation to a higher one that is slightly 

more abstract [35]. 

2.4.2.1 Fully Connected Neural Networks 

The first and simplest type of ANN is the fully-connected neural network shown in 

Figure 2.1. Each unit (neuron) in the hidden layer computes a weighted sum of its inputs, 

followed by a nonlinear activation function. The output of the nth layer is given by 

xn = 𝑓(𝑊𝑛
𝑇𝑥𝑛−1 + 𝑏𝑛)  

where 𝑓 is the nonlinear activation function, 𝑥𝑛−1 is the input to the nth layer, 𝑊𝑛 is a 

matrix of weights that describes a mapping from 𝑥𝑛−1 to 𝑥𝑛, and 𝑏𝑛 is a vector of biases. 

The aim of the network is to modify the parameters of the model until the network maps 

the input to the desired output. Learning the parameters involves minimizing a loss 

function, which is done via an optimizer and the backpropagation algorithm [36]. 
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Figure 2.1: Fully-Connected Neural Network 

 

ANNs have performed well with respect to classification of cognitive workload 

using non-stimulus locked EEG data and typically outperform other machine learning 

classification methods in this domain. Wilson et al. investigated the performance of a 

single, 43-node hidden-layer fully connected ANN with respect to online classification of 

operator workload using EEG data [37]. EEG data was collected from 8 participants 

performing the NASA Multi-Attribute Task Battery (MATB) task at one of three levels of 

workload: baseline, low, and high. Data was collected on a single day during three 

5-minute sessions, each corresponding to one of the three levels of workload. The raw 

EEG data was transformed to the frequency domain using the FFT so that the average 

power could be computed in each of the five traditional EEG bands using a 10-second 

sliding window with 5 seconds of overlap. EEG bands included delta (1-3 Hz), theta 

(4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma (31-42 Hz). Data was segmented 

randomly such that 75.0% was used for training and 25.0% for validation. The trained 

network was then used for online classification of two additional blocks of the three 

workload levels. The mean classification accuracies were 85.0% for the baseline 
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condition, 82.0% for the low workload condition, and 86.0% for the high workload 

condition. 

Christensen et al. assessed the cross-day stability of EEG data for use in 

classification of operator workload [38]. EEG data was collected from 8 participants 

performing the MATB task at two levels of workload with collection for each participant 

occurring over 5 days randomly distributed over a four-week period. Due the potential for 

a classifier trained on only one day’s worth of data to key in on unstable features unique to 

that day, Christensen hypothesized that using multiple days in the training set would 

improve generalization. As in Wilson et al., feature engineering consisted of transforming 

the EEG data to the frequency domain and then computing the average power in each of 

the traditional EEG bands using a sliding window. Christensen divided the 5 days of data 

into various combinations of days and sessions within a day, with 50% being used for 

training and the remaining data used for validation and testing. Linear discriminant 

analysis (LDA), support vector machine (SVM), and ANN models were trained using 

cross validation. Christensen found that the ANN performed the best, with a classification 

accuracy of 83% when trained on the first 4 days of data and tested on the 5th day. A 

decline in the performance of all classifiers was observed as the amount of days in the 

training set was decreased. 

2.4.2.1.1 Recurrent Neural Networks 

Recurrent Neural Networks (RNN) are a type of neural network that specialize in 

learning sequences by maintaining a state containing information relative to what has been 

seen so far via a recurrent connection (internal loop) in the hidden layer [34].  The 

structure of a simple RNN is shown in Figure 2.2. An issue with the simple RNN is that it 
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is unable to retain information about inputs seen many timesteps earlier and thus unable to 

learn long term dependencies. This is due to gradients becoming extremely small during 

backpropagation, effectively preventing weights from changing value and rendering the 

network untrainable. The Long Short-Term Memory (LSTM) algorithm was designed to 

address this issue. The LSTM algorithm combats these vanishing gradients by adding 

mechanisms which provide control over which pieces of information to remember, which 

to update, and which to focus on. 

 

Figure 2.2: Simple Recurrent Neural Network 

 

RNNs have been shown to handle the temporal non-stationarity of EEG signals 

and often outperform the machine learning models previously discussed. Hefron et al. 

extended the work of Christensen by investigating the use of deeply recurrent neural 

networks to account for the temporal dependence in EEG-based workload estimation on 

the same dataset [39]. Feature engineering was conducted in a manner similar to 

Christensen, however, Hefron also computed the variance, skewness, and kurtosis of the 

power distribution for each window. Hefron explored the performance of several models 

on all combinations of mean, variance, skewness, and kurtosis features. The data was split 
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such that the first four days were used for training and cross-validation while the last day 

was reserved for testing. The model the highest performance was a deep LSTM model 

which consisted of an LSTM layer with 50 hidden units, followed by an LSTM layer with 

10 hidden units with a dropout of 20% on the inputs, followed by a fully-connected layer 

with a sigmoid activation function for classification. Hefron’s deep LSTM architecture 

achieved a classification accuracy of 93.0%, representing a 59.0% decrease in error 

compared to the best published results for the dataset. 

2.4.2.1.2 Convolutional Neural Networks 

A Convolutional neural network (CNN) is a type of neural network that specializes 

in learning translation invariant spatial hierarchies of patterns [34]. Three main types of 

layers are used to build CNNs: The convolutional layer, pooling layer, and fully-

connected layer. In the convolutional layer, local patterns are learned by convolving the 

input with a set of kernels. This is followed by application of an elementwise activation 

function such as a Rectified Linear Unit (ReLU) to produce an activation map. The 

pooling layer performs a downsampling operation along the spatial dimensions of the 

activation map. Finally, the fully-connected layer computes the class scores used to 

classify the input. CNNs have been shown to outperform other machine learning models 

including fully connected ANNs in the area of emotion classification from EEG data. 

Tripathi et al. used a CNN to classify human emotion using EEG data from the DEAP 

dataset which represents the benchmark for emotion classification research [40]. The 

DEAP dataset consists of 40-channel EEG data recorded from 32 participants as they 

watched 40 one-minute extracts of music videos and gave an online self-assessment based 

on arousal, valence, and dominance for each video. However, the authors restricted their 
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research to classifying levels of valence and arousal for both the binary (high or low) and 

3 class (high, normal, or low) problem. The raw data structure was a 40 x 40 x 8064 array 

corresponding to trial x channel x data. The authors divided the 8064 readings per channel 

into batches of approximately 807 readings each. For each batch they extracted the mean, 

median, maximum, minimum, standard deviation, variance, range, skewness and kurtosis 

values. They further incorporated the same values computed over the 8064 readings along 

with the experiment and participant number for a total of 101 values per channel. The 

input to their CNN was then a 2D array of shape 40 x 101. Their CNN consisted of two 

convolutional layers followed by a max pooling layer with a 50% dropout on the inputs 

followed by a 128-node fully connected layer with a tanh activation function and 25% 

dropout on the inputs followed by 2-node or 3-node fully connected layer with a softplus 

activation. Their model used categorical cross entropy as the loss function and stochastic 

gradient descent as the optimizer. Their model achieved an accuracy of 0.814 and 0.734 

for binary classification of valence and arousal levels and an accuracy of 0.668 and 0.576 

for 3-class classification of valence and arousal levels. Their results represent a 4.51 and 

4.96 and 13.39 and 6.58 percentage improvement over the best published results for this 

dataset. 

2.5 Summary 

In summary, very little research has delved into inferring decision confidence 

through behavioral and electrophysiological signals using machine learning approaches. 

Within the body of research that exists, the use of behaviors such as reaction time and 

information seeking and electrophysiological features such as stimulus windowed time-
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series data and time-frequency representations of confidence appears promising. Despite 

these promising results, the fact that the analyses surveyed in this work have focused on 

investigating the neural representation of decision confidence for decisions that meet the 

assumptions of the DDM must be emphasized, as it is currently unknown whether these 

results will generalize to more complex decisions encountered in the operational 

environment.   
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III. Methodology 

3.1 Chapter Overview 

This chapter describes the methodology used for the collection and analysis of data for 

this research. First, the chapter discusses the research questions and hypotheses. Then, a 

description of the experiments that were performed, including the makeup of the 

participants, required assumptions and the various factors and variables which were 

changed is given. This is followed by a description of the data acquisition process and data 

wrangling techniques used to create a dataset. Finally, the analysis strategy that is used in 

Chapter IV is presented. 

3.2 Background 

The objective of this research is to determine if human electrophysiological signals 

and human behavioral features can be used to infer decision confidence in simple and 

complex decision-making environments. To complete this objective, the following 

research questions are investigated: 

RQ1. Can electrophysiological features be used in combination with machine learning 

techniques to infer decision confidence in a simple decision with a performance 

greater than chance? 

Hypothesis: Machine learning models will be able to learn the neural correlates of 

decision confidence and thus can be used to infer decision confidence in a simple 

decision with a performance greater chance. 
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RQ2. What are the salient electrophysiological features for inferring decision confidence 

in a simple decision? 

Hypothesis: Changes in power in the five traditional EEG frequency bands (alpha 

in particular) will be prominent features for inferring decision confidence. 

RQ3. Can behavioral features be used in combination with machine learning techniques 

to infer decision confidence in a complex decision with a performance greater than 

chance? 

Hypothesis: Machine learning models will be able to learn correlations between 

decision confidence and reaction time and information seeking and thus can be 

used to infer decision confidence in a complex decision with a performance 

greater than chance. 

RQ4. Are the salient electrophysiological features for inferring decision confidence the 

same for both simple and complex decisions?  

Hypothesis: Features identified as salient for a simple decision will still encode 

important information that can be used to infer decision confidence for complex 

decisions. 

3.3 Experiment 

The experiment conducted for this research consisted of two tasks, corresponding to 

simple and complex decision-making environments, accomplished during a single 2-hour 

period. A diagram of the experiment sequence is shown in Figure 3.1. The first phase was 

a modified two-alternative forced choice (2AFC) task [41] using random dot 

kinematograms (RDK) [3]. The use of a 2AFC experiment falls in line with previous 
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research in that it fits into the experimental paradigms based on the DDM [5], and thus the 

data generated could be utilized to extend the results of multiple observational studies 

identifying neural correlates of decision confidence. Additionally, no research has been 

conducted that uses machine learning for decision confidence inference using EEG data 

collected from an RDK motion discrimination task.  The design of the second phase 

looked to extend these results even further by simulating a more realistic decision-making 

environment akin to what a cyber defense operator experiences during every day 

operations in which the assumptions of the drift diffusion model no longer hold. For both 

phases, Electroencephalography (EEG), Electrooculography (EOG), and 

Electrocardiography (ECG) data was collected while participants completed the tasks. Pre- 

and post-experiment questionnaires were given to each participant on the experiment day 

and can be found in Appendix C and D respectively. 

 

Figure 3.1: Experiment Sequence 

3.3.1 Participants 

A total of 8 male participants were recruited for this research. All participants were 

voluntary military or government civilian personnel. Participant age ranged from 21 to 31 

with a mean age of 24.8 and standard deviation of 3.60. All participants had at a 

minimum, a Bachelor’s Degree, and used electronic devices on a daily basis for both work 

and personal use. Two participants had previously completed courses in cyber security 
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education and one participant had earned several cyber security certificates. Participants 

were not compensated for their participation. Exclusion criteria included: inability to use a 

mouse and keyboard, visual impairment or inability to view information on a computer 

screen, and specific motor, perceptual, or cognitive conditions which precluded them from 

operating a computer. Additionally, all participants had to consent to the placement of 

electrodes on their head, face, and chest. Participant consent was obtained prior to starting 

participation in the study. 

3.3.2 Random Dot Kinematogram Task 

Participants performed a perceptual decision-making task in which they had to 

determine the global direction of motion (left or right) of dots in an RDK. The experiment 

interface was created using the PsychoPy API [42]. An example RDK is shown in Figure 

3.2. The RDK was displayed on a 15-inch monitor with a resolution of 3840 x 2160 pixels 

and refresh rate of 60Hz. Participants sat in a comfortable chair 60 cm in front of the 

monitor. Each RDK consisted of an aperture with a 10 cm diameter creating a visual angle 

of 9.5° which 200 white dots (2 x 2 pixels) moved on a black background.  A subset of 

dots (signal dots) within the aperture moved coherently in either the left or right direction, 

while the remaining dots (noise dots) each followed a random, but constant direction. The 

motion coherence level for each RDK was defined as the number of signal dots divided by 

the total number of dots. All dots moved at a speed of 6°/s and had a limited lifetime of 

200 ms.  
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Figure 3.2: Example Random Dot Kinematogram 

The experiment sequence is shown in Figure 3.3. Each trial began with the participants 

fixating on a cross for 1500ms before the stimulus presentation. The stimulus was 

presented for 400ms followed by a forced delay of 1000ms to allow for the evoked 

response in EEG to unfold without motor contamination [21]. The motion coherence level 

for each stimulus was randomly selected from seven levels, with the distribution of these 

levels intended to produce approximately 50% discrimination accuracy. After the forced 

delay, participants were prompted for their decision. Participants were given the option to 

use a right or left-handed decision input configuration for the entire task. Participants 

pressed the ‘A’ or ‘J’ key to indicate global motion to the left, the ‘D’ or ‘L’ key to 

indicate global motion to the right, or the ‘S’ or ‘K’ key to opt-out if they could not 

identify the direction of global motion. A scoring system was implemented to encourage 

participants to opt-out during low confidence trials [31]. Participants were awarded 1 point 
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for each correct answer, -1 points for each wrong answer, and 0 points if they chose to 

opt-out or did not input a response before time expired. Each participant completed a total 

of 440 trials.  

 

Figure 3.3: Random Dot Kinematogram Task Sequence 

3.3.2.1 Response Variables 

Participant decision confidence is the sole response variable for this experiment. 

Decision confidence is the degree to which a participant believes that their decision is 

correct. For this experiment, decision confidence is treated as a categorical variable where 

the participant is either confident or not confident. If the participant selects “Left” or 

“Right”, their decision is labelled as confident and if they select “Don’t Know” or run out 

of time it is labelled as not confident. 
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3.3.2.2 Independent Variables 

The motion coherence level of the RDKs is the sole independent variable for this 

experiment. Seven levels of coherence (10%, 20%, 30%, 40%, 50%, 70%, and 80%) were 

chosen based on research by Pilz et al. which examined motion coherence and direction 

discrimination in healthy adults [43]. The motion coherence levels were approximately 

evenly distributed over the 440 trials and order was determined through randomization 

and then held constant for each participant. 

3.3.2.3 Control Variables 

There are five control variables for this experiment: aperture size, number of dots, dot 

speed, dot lifespan, and stimulus duration. Table 3.1 provides a summary of the control 

variables for this experiment.   

Table 3.1: Control Variables 

Factor Desired Experimental Level  How Controlled 

Aperture size 10 cm diameter Experiment configuration  

Number of dots 200 Experiment configuration 

Dot speed 6°/s Experiment configuration 

Dot lifespan 5 frames Experiment configuration 

Stimulus duration 400 ms Experiment configuration 

 

Aperture size was chosen to minimize participant eye strain. The number of dots and dot 

speed was set based on pre-trial experimentation such that no individual dot could be 

easily tracked by a participant. Dot lifespan was set so that the distribution of dots within 

the aperture was approximately uniform. The stimulus duration was chosen based on the 

research by Pilz et al. [43]. 
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3.3.3 Cyber Intruder Alert Testbed Task 

Participants performed a simulated cyber investigation typical of a first line computer 

network defense analyst. The investigation was conducted using a modified version of the 

Cyber Intruder Alert Testbed (CIAT) synthetic task environment (STE) [2]. An example 

of the CIAT interface is shown in Figure 3.4. Participants investigated 30 cyber-alerts 

designed by a subject matter expert, where each alert had one of four levels of difficulty. 

The goal of each alert investigation was to determine the validity of the alert based on 

information available from various tools. Table 3.2 outlines the available tools and their 

functionality.  

 

Figure 3.4: CIAT Interface 

 

Each alert investigation lasted for 2 minutes. Every 30 seconds, participants were 

queried via a popup which asked them to assess the current alert by selecting one of three 

options via a button-press as shown in Figure 3.5. Participants selected “Threat” if they 
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believed the alert was legitimate, “False Alarm” if they believed the alert was generated in 

error, or “I Don’t Know” if they were unsure at the time of the prompt. Participants had 5 

seconds to submit their answer, which did not count towards the 2-minute trial time. If 

time expired before the participant could submit their answer, it was logged as a “I Don’t 

Know”. The same scoring system from the first phase was utilized to encourage 

participants to select “I Don’t Know” when their confidence was low. The test matrix for 

the CIAT experiment is shown in Appendix A. During the course of the experiment, the 

timing of every mouse click and keyboard input was recorded for each participant. This 

data was then reconstructed into a workflow and timeline that could be used to replay 

participant behavior during the investigation of every alert, including which tools were 

accessed and how long they were accessed for. 

Table 3.2: CIAT Tools and Descriptions 

Tool Description 

Packet Capture (PCap) Displays raw packet information 

 

Frame Information Provides more detailed information corresponding to the 

rows of the PCAP tool, including additional log information 

 

Alert Lookup Provides a description of each alert with triggering 

information 

 

Glossary Defines common terms encountered during cyber 

investigations 

 

Network Information Contains information about whether certain IP addresses are 

known to be safe or dangerous 
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Figure 3.5: Example Decision Prompt 

3.3.3.1 Response Variables 

There are six primary response variables for this experiment: decision confidence, 

reaction time, number of tool transitions, EEG, ECG, and EOG. As in the first phase, 

decision confidence is the degree to which a participant believes that their decision is 

correct. For this experiment, decision confidence is treated as a categorical variable where 

the participant is either confident or not confident. If the participant selects “Threat” or 

“False Alarm”, their decision is labelled as confident and if they select “I Don’t Know” or 

run out of time it is labelled as not confident. Response time is the length of time taken for 

the brain to perceive and react to a stimulus. For this experiment, it is measured as the 

difference between the time at which the participant was prompted for a decision and the 

time at which they selected an option. Number of tool transitions is the number of times in 

which the participant switched between the available tools. EEG, ECG, and EOG are the 

electrophysiological signals to be recorded. Table 3.3 summarizes the response variables 

for this experiment and their associated measure. 
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Table 3.3: Response Variables for the CIAT Experiment 

Response Variable Type Measurement 

Decision Confidence Categorical [Confident, Not Confident] 

Reaction Time Numerical Time (ms) 

Number of Tool Transitions Numerical Quantity 

EEG Numerical Voltage 

ECG Numerical Voltage 

EOG Numerical Voltage 

3.3.3.2 Independent Variables 

There are two independent variables for this experiment: alert difficulty and query 

number. Alert difficulty is categorical and has four levels: Easy, Medium, Hard, and Very 

Hard. The difficulty level for each alert was determined by a subject matter expert based 

on four factors: information availability, information needed, and information 

inconsistency. Information availability was measured as the amount of information 

relevant to the current alert that was available in the tools, information needed was 

measured as the number of tools that were required in order to accurately assess the alert, 

and information inconsistency was measured as the amount of conflicting information 

among the tools. The final distribution of difficulty for the 30 alerts is 10 Easy, 8 Medium, 

6 Hard, and 6 Very Hard. Alert order was determined through randomization and then 

held constant for all participants and is summarized in the test matrix given in Table 3.4. 

The decision query number is also categorical with four levels and represents the amount 

of time participants have to investigate an alert before making a decision. Queries 1, 2, 3, 

and 4 occur at 30 seconds, 1 minute, 1 minute and 30 seconds, and 2 minutes of 

investigation time respectively. Table 3.5 summarizes the independent variables for this 

experiment and their associated measure. 
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Table 3.4: Test Matrix 

Alert Number Alert Difficulty Truth 

1 EASY THREAT 

2 EASY THREAT 

3 HARD FALSE ALARM 

4 VERY HARD FALSE ALARM 

5 HARD THREAT 

6 EASY THREAT 

7 EASY FALSE ALARM 

8 HARD FALSE ALARM 

9 EASY THREAT 

10 EASY FALSE ALARM 

11 MEDIUM FALSE ALARM 

12 VERY HARD FALSE ALARM 

13 MEDIUM THREAT 

14 EASY THREAT 

15 EASY FALSE ALARM 

16 EASY THREAT 

17 VERY HARD FALSE ALARM 

18 MEDIUM FALSE ALARM 

19 VERY HARD FALSE ALARM 

20 MEDIUM FALSE ALARM 

21 MEDIUM THREAT 

22 VERY HARD FALSE ALARM 

23 EASY THREAT 

24 HARD FALSE ALARM 

25 MEDIUM THREAT 

26 MEDIUM THREAT 

27 MEDIUM FALSE ALARM 

28 VERY HARD FALSE ALARM 

29 HARD FALSE ALARM 

30 HARD THREAT 

 

 

Table 3.5: Independent Variables for the CIAT Experiment 

Independent Variable Type Measurement 

Alert Difficulty Categorical [EASY, MEDIUM, HARD, VERY HARD] 

Query Number Categorical [1, 2, 3, 4]  

3.3.3.3 Control Variables 

There are two control variables for this experiment: The number of alerts, and the alert 

time limit. The 30 alerts and their corresponding difficulties were designed by a subject 
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matter expert so as to give an approximately equal confidence distribution among the trials 

[2]. The time limit of two minutes per alert was imposed in order to better facilitate 

analysis of the electrophysiological data with respect to the research questions. If 

participants have an unlimited time to perform their investigation, it becomes significantly 

harder to identify areas in the electrophysiological data that correspond to decision-

making and decision confidence. Thus, extracting salient features from non-stimulus 

aligned data is left as future work. 

3.4 Electrophysiological Data Acquisition 

For each phase of the experiment EEG, ECG, and EOG data was collected using the 

Cognionics Mobile-72 system [44], which is capable of collecting up to 72 channels of 

electrophysiological data. The electrophysiological data collection setup is shown in 

Figure 3.6. EEG data was collected using the 64 Ag/AgCl electrodes on the EEG headset.  

The layout of the electrodes is shown in Figure 3.7. Note that throughout the data 

collection process, a periodic malfunction raised the noise floor at random time points 

Each participant had their head measured so as to identify an appropriately fitting 

headset. Participants wore the headset with the ground electrode placed on the nape of the 

neck and the reference electrode on the right mastoid. 
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Figure 3.6: Data Acquisition Setup 

 

 

Figure 3.7: International 10-20 System 

 

The EEG headset is connected through a wired connection to the Data Acquisition Unit 

(DAQ), which wirelessly transmits the EEG measurements to the data acquisition 

software on the experiment computer. Stimulus presentation and participant actions were 
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time stamped with unique trigger values using the wireless trigger device. An example is 

shown in Figure 3.8.  

 

Figure 3.8: RDK task EEG data timestamped (sec) to show stimulus presentation (7680) 

and participant response (12800). 

EOG and ECG data was collected through 8 auxiliary inputs using the Auxiliary 

Input Module, which was connected directly to the experiment computer. The placement 

of EOG and ECG electrodes is shown in Figure 3.9 and Figure 3.10 respectively. To 

measure EOG, two pairs of electrodes were utilized, with one pair being affixed to the 

participant’s temples, and the other to the nasion and under the participant’s left eye. A 

single pair of electrodes placed on the participant’s chest was utilized to measure ECG. 

Lastly, a single electrode was placed on the participant’s left clavicle for use as a shared 

ground. Data was collected at a sampling rate of 1000Hz and saved in the BioSemi Data 

Format (.BDF). 



53 

 

Figure 3.9: EOG electrode placement 

 

Figure 3.10: ECG electrode placement 

3.5 EEG Pre-Processing 

EEG data contains both oscillations generated by the brain activity of interest as well 

as noise introduced by a diverse range of artifacts such as eye-blinks, muscle movements 

and environmental noise. Preprocessing refers to any transformations or reorganizations of 

the data that facilitate analysis [9]. All EEG data was preprocessed using EEGlab version 

14 [45] following the PREP pipeline [46]. A summary of the preprocessing pipeline is 

given below: 

1)  Data was downsampled from the collection sampling rate of 1000 Hz to 256 Hz. 

This was done to speed up computation as well as aid in independent component 

analysis (ICA) by cutting off unnecessary high-frequency information. 

2) A high-pass filter at 1 Hz was applied to remove low frequency drift. 
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3) Channel location data was imported to allow for re-referencing. 

4) A notch filter at 60 Hz was applied to suppress line noise. 

5) Bad channels were removed using the Artifact Subspace Reconstruction (ASR) 

algorithm through the EEGLab clean_rawdata plugin [47]. 

6) Removed channels were interpolated using spherical interpolation to minimize 

potential bias when re-referencing.  

7) The reference was changed from the mastoid to the channel average. 

8) ICA was performed to identify independent components associated with eye-

blinks. 

9) Independent components associated with eye-blinks were removed based on the 

VEOG channel through the EEGlab icablinkmetrics plugin [48]. 

3.6 Analysis Strategy 

The following section outlines the electrophysiological analysis and machine learning 

techniques used to fit the various classifiers investigated in this research, as well as the 

methods and metrics used to evaluate both classifier performance and feature saliency.  

3.6.1 Event Related Potential Analysis 

To determine if the ERP components discussed in chapter 2 could be used to 

distinguish between the confident and unconfident experimental conditions and associate 

this ability with specific regions of the brain, a statistical analysis of the ERPs for each 

participant was conducted. Because the EEG data is sampled at multiple time points for 

each of the 64 channels, statistical analysis of the ERPs is a multiple comparisons problem 

(MCP). That is, the statistical analysis involves simultaneous statistical tests at each 
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(channel, time) pair. When dealing with an MCP, the family-wise error rate (FWER) must 

be controlled. The FWER is the probability under the null hypothesis of no difference 

between the confident and unconfident conditions of falsely concluding that there is a 

difference at one or more (channel, time) pairs. As the number of statistical tests increases, 

so does the FWER. Consider the case of 30 hypotheses to test at a significance level of α = 

0.05. The probability of observing at least one significant result due to chance is 

𝑃(at least one significant result) = 1 − 𝑃(no significant results) 

                                         = 1 − (1 − 0.05)30 

                  ≈ 0.79 

Thus, there is a 79% chance of observing at least one significant result in 30 hypothesis 

tests even if all of tests are not actually significant. In the case of ERP analysis, the 

number of tests is on the order of several thousand and so the probability of observing at 

least one significant result due to chance is close to 100%. Methods for controlling FWER 

such as the Bonferroni correction [9] often involve adjusting α in such a way that the 

probability of observing at least one significant result due to chance is below the desired 

level of significance. However, with an extremely large sample size, these methods result 

in a statistical test that is too conservative. For this research, a more sensitive 

nonparametric method developed by Maris and Oostenveld [56] is utilized . A summary of 

the nonparametric method is given below: 

1) For every (channel, time) pair, compare the confident and unconfident ERPs by 

means of a t-value. 

2) Select all (channel, time) pairs whose t-value is larger than the 95th quantile of the 

Student’s t-distribution. 
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3) Cluster the selected (channel, time) pairs on the basis of temporal and spatial 

adjacency. 

4) Calculate cluster-level statistics by taking the sum of the t-values within a cluster. 

5) Take the largest of the cluster level statistics. 

3.6.2 Machine Learning 

The objective of inferring participant decision confidence was formulated as a binary 

classification problem where the two classes were whether the participant was confident 

or not confident and where the distribution of the two classes was imbalanced as shown in 

Table 3.6.  All analysis was conducted using python and its associated statistical packages. 

Machine learning model development was done using Scikit-learn, TensorFlow and Keras 

frameworks.   

Table 3.6: Class Distribution of Observations 

Participant  Task 
Confident 

Observations 

Not Confident 

Observations 

Percent 

Confident 

2863 RDK 238 202 54.1 

2863 CIAT 87 33 72.5 

3233 RDK 250 190 56.8 

3233 CIAT 91 29 75.8 

4318 RDK 297 143 67.5 

4318 CIAT 86 34 71.7 

4524 RDK 231 209 52.5 

4524 CIAT 73 47 60.8 

7984 RDK 393 47 89.3 

7984 CIAT 84 36 70.0 

8079 RDK 373 67 84.7 

8079 CIAT 97 23 80.8 

8477 RDK 304 136 69.9 

8477 CIAT 87 33 72.5 

9658 RDK 183 257 41.5 

9658 CIAT 99 21  82.5 
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3.6.2.1 Feature Extraction and Data Segmentation 

Before a classification model can be fit, the raw data must be transformed into an 

appropriate format. For traditional machine learning models, domain specific knowledge 

is used to manually create features from the data. In the case of deep learning models, the 

data must be transformed into a format the model expects, such as a sequence for RNNs or 

an image for CNNs. The following is a description of the process used to transform the 

RDK and CIAT task data into formats suitable for classification. 

3.6.2.1.1 Frequency Domain Features 

The raw EEG data for the RDK task was segmented into epochs spanning from -1s to 

2s relative to stimulus onset. Each epoch was visually inspected and epochs containing 

large amounts of noise relative to the entire dataset were rejected. An example of an epoch 

that was rejected is given in Figure 3.11. No more than 2 percent of trials were rejected for 

the RDK task per participant and no more than 3 percent of trials were rejected for the 

CIAT task. The data from each epoch was then transformed into features in the five 

traditional EEG bands by taking the data from each channel and convolving with a family 

of complex Morlet wavelets spanning 30 frequencies over the logspace from 3 to 50 Hz. 

The time range for each wavelet was from -1s to 1s and the number of cycles in each 

wavelet increased logarithmically from 3 to 10 cycles in conjunction with the frequencies. 

The mean power in each band was obtained by squaring the absolute value of the mean of 

the resulting complex time series over the epoch. This produced up to 320 features for 

each trial and up to 440 observations per participant. 

The raw EEG data for the CIAT task was segmented into epochs spanning from -1s to 

5s relative to the appearance of a decision prompt. Epochs were inspected and rejected in 
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the same manner as the RDK task. The data from each epoch was transformed to the 

frequency domain through the wavelet transform using the same parameters as in the RDK 

task. However, to increase the number of samples, mean power in each band was 

computed using a 3s window with an overlap of 1.5s resulting in up to 320 features and up 

to 360 observations per participant. 

 

 

Figure 3.11: Visually Rejected Epoch 

 

3.6.2.1.2 Time Domain Features 

The raw EEG data for both tasks were segmented into epochs in the same manner 

as the frequency domain feature engineering process. Each epoch was split into 1-second 

windows with no overlap. This resulted in 64 features and approximately 1,320 

observations per participant for the RDK task and 64 features and 720 observations for the 

CIAT task. 
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3.6.2.2 Classification Models 

Several methods of classification were investigated for inferring participant decision 

confidence that generate both linear and non-linear decision boundaries. Based on their 

success in inferring cognitive activities other than decision confidence, logistic regression, 

LDA, random forest, fully-connected ANN, and convolutional-recurrent neural network 

(CRNN) classifiers were fit using the EEG data for both the RDK and CIAT tasks. Prior to 

fitting the classifiers, observations were randomly divided into a test set (30%) and non-

test set (70%) for training and validation. Observations were stratified such that the class 

imbalance was the same across the training validation and test sets.  

3.6.2.2.1 Logistic Regression and Linear Discriminant Analysis 

Logistic regression and LDA classifiers were the first type of classifiers used to fit 

models using the EEG data. In the case of logistic regression, since the class distribution 

for both tasks was imbalanced, the standard log-likelihood equation was replaced by a 

weighted one where the weights were inversely proportional to the class frequency [49]. 

For both types of classifiers, the best features were selected using recursive feature 

elimination (RFE) in which features were selected by recursively considering smaller and 

smaller sets of features based on Mathew’s Correlation Coefficient (MCC) computed 

using 5-fold cross validation. An example in which RFE was used to select 26 features is 

shown in Figure 3.12.  
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Figure 3.12: Recursive Feature Elimination with Cross-Validation 

3.6.2.2.2 Random Forest Classification 

A random forest classifier was trained for each task on all 320 EEG features and the 

best parameters were chosen based on the average MCC computed using 5-fold cross 

validation. The number of features considered when looking for the best split was varied 

from 1 to 30. For the number of trees, every integer from 1 to 500 was investigated. 

Maximum depth of an individual tree was varied from 1 to 20. The importance of each 

feature was determined as the total decrease in node impurity averaged over all trees in the 

ensemble [50]. 

3.6.2.2.3 Fully-Connected Neural Network 

The first of the ANN models that were implemented was a simple fully-connected 

network. Hyperparameter values explored include 1, 2, and 3 fully connected layers with a 

ReLu activation function and 32, 64, 128, 256, and 512 hidden nodes per layer. All 

models used the binary cross-entropy loss function and Adam optimizer.   Learning rate 

was tuned by exploring negative powers of 10 from 0.01 to 0.000001 with a decay of 

0.000001. Model selection was done using validation-based early stopping with a patience 
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of 10 epochs and a delta of 0.00001. A dropout of 20% on the inputs was used for 

regularization. Networks were trained using mini-batch gradient descent with a batch size 

of 32 observations. The architecture that resulted in the best performance among all 

participants is shown as an example in Figure 3.13. 

 
Figure 3.13: Example Fully connected Neural Network Architecture 

3.6.2.2.4 Convolutional-Recurrent Neural Network 

In contrast to the other classifiers which were fit using frequency transformed EEG 

data, a convolutional-recurrent architecture was fit for each task using the time-series EEG 

data described in section 3.6.1.1.1.  This architecture consists of three components: The 

1D convolutional layers exploit the local patterns in the temporal domain which are then 

used as inputs to the LSTM layer to account for the temporal dependencies between the 

frames. The final component is a fully-connected layer that predicts the participant’s 

confidence. Hyperparameter tuning consisted of varying the number of layers, number of 

output filters, and kernel width in the convolutional component, the number of hidden 

units in the LSTM component and the learning rate. Hyperparameter values explored in 
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the convolutional component include 2, 3, and 4 layers, 32, 64, and 128 output filters, and 

kernel widths of 5 and 10. The number of hidden units in the LSTM layer was tuned by 

exploring powers of 2 ranging from 32 to 512. Learning rate was tuned by exploring 

negative powers of 10 from 0.01 to 0.000001 with a decay of 0.000001. RMSprop was 

used as the optimizer due to being well-suited to handling non-stationary environments 

[51]. All models used a binary cross-entropy loss function. Batch normalization and a 

dropout of 25% on the inputs were used for regularization. Selection was done using 

validation-based early stopping with a patience of 10 epochs and a delta of 0.00001. 

Networks were trained using mini-batch gradient descent with a batch size of 32 

observations. The architecture that performed best among all participants is given in 

Figure 3.14 as an example. 

 

Figure 3.14: Example Convolutional-Recurrent Architecture 
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3.6.2.3 Performance Metrics 

Many metrics exist to evaluate the performance of classification models. However, the 

usefulness of a metric varies with the classification problem being solved. It is also 

unlikely that a single metric can completely describe all facets of a classifier’s 

performance. Thus, the following performance metrics were chosen to best capture the 

performance of the classifiers discussed in the previous section. 

3.6.2.3.1 Confusion Matrix 

A confusion matrix displays information regarding the actual class labels versus the 

predictions made by a classifier and provides additional insight into the misclassifications 

that were made. Figure 3.15 provides an example confusion matrix.  

 Predicted  

Confident 

Predicted 

Not Confident 

Actual 

Confident 

True 

Positive 

False 

Negative 

Actual 

Not Confident 

False  

Positive 

True 

Negative 

Figure 3.15: Confusion Matrix 

 

For a binary classifier, one class is labelled as the positive and the other as the negative. 

Using this notation, a True Positive (TP) occurs when both the predicted and actual class 

are the “confident” class, a False Positive (FP) occurs when the predicted class is the 

“confident class” and the actual class is the “not confident class”, a False Negative (FN) 

occurs when the predicted class is the “not confident” and the actual class is the “confident 

class”, and a True Negative (TN) occurs when both the predicted class and actual class are 

the “not confident class”. The following metrics can be computed from the entries of a 

confusion matrix: 
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 Balanced Accuracy (BACC): The conventional accuracy can be a misleading metric if 

the distribution of observations over classes is imbalanced. Since this is the case for 

the datasets of this study, accuracy is not used and is instead replaced with balanced 

accuracy. BACC addresses the issue of falsely suggesting above-chance 

generalizability by reducing to the conventional accuracy when the classifier performs 

equally well on either class, but drops to chance if the conventional accuracy is high 

only due to the classifier taking advantage of the imbalanced data [52]. BACC is given 

by the equation 

BACC =

TP
P +

TN
N

2
  

 Recall: The proportion of predictions in which the classifier correctly classifies the 

“confident” class relative to the total number “confident” class observations. Recall is 

given by the equation 

Recall =
TP

TP + FN
 

 

 False Positive Rate (FPR): The proportion of predictions in which the classifier 

incorrectly classifies the “not confident” class as the “confident” class relative to the 

total number “not confident” class observations. FPR is given by the equation 

FPR =
FP

FP + TN
 

 

 Specificity: The proportion of predictions in which the classifier correctly classifies 

the “not confident” class relative to the total number of “not confident” class 

observations. Specificity is given by the equation 
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Specificity =
TN

FP + TN
 

 

 Precision: The proportion in which the classifier correctly classifies the “confident” 

class relative to the total number of “confident” class predictions. Precision is given by 

the equation 

Precision =
TP

TP + FP
 

 

 Negative predictive value (NPV): The proportion in which the classifier correctly 

classifies the “not confident” class relative to the total number of “not confident” class 

predictions. NPV is given by the equation 

NPV =
TN

TN + FN
 

 

 Matthews Correlation Coefficient (MCC): MCC is a robust measure of the quality of 

the classifier when it is trained and evaluated on an imbalanced dataset and can be 

interpreted as a measure of correlation between the actual and predicted classes. MCC 

can take any value from -1 to 1 where values greater than or equal to 0.4 indicate good 

agreement between the observed and predicted class labels. MCC is given by the 

equation 

 

 

MCC =
𝑇𝑃(𝑇𝑁) − 𝐹𝑃(𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
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3.6.2.3.2 Receiver Operating Characteristic Curve 

The Receiver Operating Characteristic (ROC) curve is a graph showing the 

performance of a classifier at all classification thresholds. The ROC plots the TPR given 

versus the FPR. A typical ROC curve is shown in Figure 3.16. 

 

Figure 3.16: Receiver Operating Characteristic Curve 

 

A common metric used for evaluating the performance of a classifier is computing 

the area under the ROC (AUC). This provides an aggregate measure over all classification 

thresholds. The AUC falls between 0 and 1. An AUC of 1 corresponds to a classifier with 

perfect predictions, while an AUC of 0.5 corresponds to a classifier performing no better 

than random chance. 

3.6.2.3.3 Cohen’s Kappa 

A measure of how much homogeneity or consensus there is between the labeled data 

and the classifier that considers the probability of random agreement according to the 

frequency of each class. Cohen’s Kappa can take any value from -1 to 1 and is interpreted 

as follows: values ≤ 0 indicate performance no better than random chance, 0.01-0.20 as 

slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and 0.81-1.00 as 

almost perfect to perfect [53]. Cohen’s Kappa is given by the equation 



67 

𝜅 = 1 −
1 − 𝑝𝑜

1 − 𝑝𝑒
 

 

3.6.2.3.4 Binary Cross Entropy 

A measure of how much extra information is required to derive the actual class labels 

from the predicted class labels. Binary cross entropy is given by the equation 

∑ −𝑦𝑖 log(𝑦�̂�) − (1 − 𝑦𝑖)log (1 − 𝑦𝑖)

𝑖

 
 

3.6.3 Behavioral Analysis 

To investigate the main effects of the independent variables and the importance 

and strength of association between the dependent variables in the CIAT task, the 

theoretical model shown in Figure 3.17 and set of null hypotheses given in Table 3.7 were 

formulated. 

 

Figure 3.17: Theoretical Model for Participant Behaviors 
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Table 3.7: Set of Testable Hypothesis 

 Hypothesis 

H01: The query number does not have an effect on participant decision confidence 

H02: The alert difficulty does not have an effect on participant decision confidence 

H03: The query number does not have an effect on participant tool transitions 

H04: The alert difficulty does not have an effect on participant tool transitions 

H05: The query number does not have an effect on participant reaction time 

H06: The alert difficulty does not have an effect on participant reaction time 

H07: The query number does not have an effect on participant correctness 

H08: The alert difficulty does not have an effect on participant correctness 

H09: Participant tool transitions do not have an effect on decision confidence 

H010: Participant tool transitions do not have an effect on decision confidence 

H011: Participant decision confidence does not have an effect on tool transitions 

H012: Participant decision confidence does not have an effect on reaction time 

H013: Participant tool transitions do not have an effect on correctness 

 

To test the hypotheses of Table 3.7, Generalized Linear Mixed Models (GLMMs) 

were fit for each dependent variable. The GLMM is an extension of the Generalized 

Linear Model (GLM) which is the unification of both linear and nonlinear regression 

models which allows for response variables from nonnormal distributions [54]. The 

GLMM extends the GLM by including both fixed and random effects. The inclusion of 

random effects allows for the control of non-independence in the data being analyzed. In 

the case of the CIAT experiment, observations at the participant level are not independent 

as there are individual differences between participants which may have influenced their 

behaviors. Statistical inference on model parameters is done using either the likelihood 

ratio test or Wald inference [54]. Model fitting and statistical inference was done using the 

Statsmodels API [55]. 

3.7 Summary 

In summary, this chapter explained the methodology that was used for data collection 

and analysis of decision confidence in both simple and complex decisions. First, the 
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experimental design for two experiments were explored in detail. The experiments 

consisted of an RDK task in which participants judged the global motion of dots in an 

aperture and a simulated cyber investigation in which participants evaluated the validity of 

machine-generated alerts. Next, details on the setup and procedures for collecting 

electrophysiological and behavioral data were presented. This was followed by a 

description the preprocessing and segmentation used to create datasets for analysis. 

Finally, the chapter concluded with formulating the problem of inferring decision 

confidence as a binary classification problem and the techniques used for evaluating 

classifier performance as well as the statistical analysis of the behavioral and ERP data.  
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IV. Analysis and Results 

4.1 Chapter Overview 

This chapter provides an in-depth look at the data exploration process and analysis 

of the results obtained from both the RDK and CIAT tasks. The chapter is divided into 

two major sections. The first section covers the results and analysis of the 

electrophysiological data collected from the RDK task. This includes the results of the 

ERP analysis and a performance evaluation of machine learning models fit using the 

electrophysiological data. The results in this section serve to answer if 

electrophysiological features can be used in combination with machine learning 

techniques to infer decision confidence in a simple decision with a performance greater 

than chance and what those salient features are. The second section covers the results and 

analysis of both the behavioral and electrophysiological data collected during the CIAT 

task. First, the results of the behavioral data exploration are presented. This is followed by 

a performance evaluation of machine learning models fit using the behavioral data. 

Finally, a performance evaluation of machine learning models fit using the 

electrophysiological data as well as the results of the ERP analysis are presented. The 

results in this section serve to answer if behavioral features can be used in combination 

with machine learning techniques to infer decision confidence in a complex decision with 

a performance greater than chance and if the salient electrophysiological features for 

inferring decision confidence are the same for both simple and complex decisions. 
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4.2 Random Dot Kinematogram Task 

4.2.1 Event Related Potentials 

Statistically significant differences (cluster corrected p-value < 0.05) between ERPs 

corresponding to the confident and unconfident conditions were observed in frontal, 

central and parietal electrodes for two of the eight participants. Table 4.1 lists the 

electrodes and corresponding latencies at which the differences were observed. ERPs 

corresponding to the confident and unconfident conditions for electrode FC1 for 

participant 4524 and electrode C2 for participant 7984 are shown in Figure 4.1. The 

significant differences are highlighted in yellow.  For participant 4524, a difference in 

negative voltages occurring on average from 791 ms to 979 ms after stimulus onset was 

observed in four frontal and four central electrodes. There are no known ERP components 

that match this description. For all eight electrodes during the time period of significance 

it was observed that the voltage for the confident condition was more negative than for the 

unconfident condition. For participant 7984, a difference in positive voltages occurring on 

average from 625 ms to 799 ms after stimulus onset was observed in six central and two 

parietal electrodes. This is likely the P300 component which peaks approximately 300 ms 

to 800 ms post stimulus onset. For all eight electrodes during the time period of 

significance it was observed that the voltage for the confident condition was more positive 

than for the unconfident condition. This observation is consistent with results presented by 

Kerkhof [12]. 
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Table 4.1: Electrodes and Latencies of Observed Differences in ERPs  

Participant 4524 Participant 7984 

Electrode Latency (ms) Electrode Latency (ms) 

F1 [785 1001] C2 [625 820] 

F2 [785 969] CP4 [625 780] 

F3 [781 957] CPz [625 820] 

F4 [800 950] CZ [625 820] 

FC1 [800 1002] FC2 [625 742] 

FC2 [797 1000] FC4 [628 820] 

FC3 [780 950] FC6 [625 780] 

FCZ [800 1000] FCz [625 813] 

 

 

Figure 4.1: Example ERPs for Participant 4524 (Left) and Participant 7984 (Right) 

4.2.2 Classification of Confidence 

To evaluate classifier performance and determine the best machine learning model 

for classifying decision confidence for the RDK task, LR, LDA, RF, and fully connected 

ANN models were trained and tested using the mean power features from each of the five 

traditional EEG bands for each of the eight participants. This resulted in a total of 32 

models that were evaluated and compared. Model performance was evaluated using four 

metrics: BACC, AUC, MCC, and Cohen’s Kappa. For each participant, the model in 

which three of the four performance metrics were highest is reported as the model with the 
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best performance.   Mean results across participants are given in Table 4.2. Each 

performance metric indicates performance fairly greater than random chance.  

Table 4.2: Mean Performance of Frequency Band Models for the RDK Task 

Metric Mean 95% Lower CL 95% Upper CL 

BACC 0.704 0.659 0.749 

AUC 0.697 0.660 0.734 

MCC 0.399 0.299 0.493 

Cohen’s Kappa 0.386 0.283 0.489 

The best performing model and the corresponding performance metrics for each 

participant are shown in Figures 4.2 through 4.5. The best performing model for each 

participant exceeded the random chance value of 0.5 for BACC and AUC and the best 

performing model for seven of the eight participants exceeded the random chance value of 

0 for MCC and Cohen’s kappa. Models fit using a fully connected ANN were consistently 

the best across participants, providing the best performance for seven participants, only 

performing worse than the random forest model for a single participant (4524). The 

highest BACC among the best performing models was 0.753, 95% CI [0.708, 0.798], 

which was associated with participant 8477’s fully connected ANN. The highest AUC was 

0.782, 95% CI [0.782, 0.819] which was associated with participant 9658’s fully 

connected ANN. The lowest BACC and AUC were 0.586, 95% CI [0.541, 0.631] and 

0.632, 95% CI[0.595, 0.669] respectiviely which were both associated with participant 

7984’s fully connected ANN. The highest MCC and Cohen’s kappa among the best 

performing models was 0.514, 95% CI [0.417, 0.611] and 0.507, 95% CI [0.404, 0.610] 

respectively. Both metrics were associated with participant 4318’s fully connected ANN 

and indicate fair to moderate performance when compared to random chance. The lowest 

MCC and Cohen’s kappa were 0.095, 95% CI [-0.002, 0.192] and 
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0.056, 95% CI [-0.047, 0.159], respectively. These metrics were once again associated 

with participant 7984’s fully connected ANN and indicate performance no better than 

random chance. 

 

Figure 4.2: BACC for the Best Performing Models on the RDK Task 
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Figure 4.3: AUC for the Best Performing Models on the RDK Task 

 

Figure 4.4: MCC for the Best Performing Models on the RDK Task 

 

 

Figure 4.5: Cohen’s Kappa for the Best Performing Models on the RDK Task 
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It is likely that the extreme class imbalance for participant 7984 shown in Table 

3.6 contributed to the lower performance when compared to the best performing models of 

the other participants with respect to every performance metric, as it has been established 

that a class imbalance can have a detrimental effect on both convergence during the 

training phase and generalization of a model on the test set [57]. The confusion matrices 

shown in Figure 4.6 provide some insight as to why this is. The top matrices correspond to 

the best across each participant’s top performing model and the bottom correspond to the 

worst across each participant’s top performing model with respect to BACC. Test sets for 

both participants contain 87 observations but the distribution of classes is significantly 

different. The test set for participant 8477 contains 30 ‘Not Confident’ observations, 

whereas the test set for participant 7984 contains only 7. If the classifier for participant 

8477 had one additional “Not Confident” misclassification, recall would drop by 3 percent 

causing BACC to drop by 1.5 percent. However, if the classifier for participant 7984 made 

the same misclassification, recall would drop 14.2 percent causing BACC to drop by 7.1 

percent. For this reason, class weighting was utilized to attempt to counter the class 

imbalance problem. However, increasing the weighting of the minority class any further 

would result in a proportional number of misclassifications of the majority class. 
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Figure 4.6: Confusion Matrices for the Best and Worst Performing Models 

 

To determine the contribution of the individual frequency bands towards 

classification of decision confidence, five single frequency band models were fit for each 

participant and compared against a paradigm where each participant’s best performing 

model architecture was trained and evaluated using the frequency information from all but 

one band. This process resulted in eighty additional models for comparison. Table 4.3 

displays each of the single band models compared to the leave-one-band-out models 

ranked by best performance and the largest decrease in performance, respectively. For all 

participants, models fit using features from all five frequency bands performed better than 

models fit using only individual bands or by leaving out any individual band, suggesting 
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that all frequency bands contribute some information towards classifying decision 

confidence. In half the participants, the model fit using only the alpha band features 

resulted in the best performance and the model in which the alpha band features were 

excluded resulted in the largest performance drop. This suggests that the alpha band may 

contribute the most information, which is in-line with previous results presented by 

Kubanek [19], Graziano [20], and Samaha [21]. For participant 2863, the model fit using 

only the delta band features resulted in the best performance and the model in which the 

delta band features were excluded resulted in the largest performance drop. In the 

literature, oscillations in the delta band are typically associated with slow-wave sleep and 

anesthesia, when no conscious functions take place. However, more recent research has 

shown that the magnitude of coherent oscillations in the delta frequency band between 

parietal and frontal cortices is modulated by different decision alternatives and that in 

conditions not requiring decision making, delta band coherences are typically reduced 

[58]. For participant 8079, the model fit using only the theta band features resulted in the 

best performance and the model in which the theta band features were excluded resulted in 

the largest performance drop. The power of theta oscillations is thought to be correlated 

with several cognitive processes: left parietal theta is correlated with memory recognition, 

central theta is correlated with decision making, and widespread theta is correlated with 

memory load [59]. There was no agreement between performance of the single band 

model and the leave-one-band-out model for two participants. For three participants, the 

model fit using only the gamma band features resulted in the worst performance and the 

model in which the gamma band features were excluded resulted in the smallest 

performance drop. This suggests that the gamma band contributes the least amount of 
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information for classifying decision confidence. Gamma is thought to be related to the 

integration of information as well as attention and working memory processes, but also 

completely overlaps with the spectral bandwidth of muscle activity [60]. Since no 

muscular artifact correction methods were performed when preprocessing the EEG data, 

an argument could be made that the classifiers may be detecting differences in muscular 

artifacts associated with a decision input rather than a participant’s confidence. However, 

the observed low feature utility of the gamma band suggests that the models are unlikely 

to be learning muscle movements rather than neural representations of decision 

confidence. 

Table 4.3: Comparison of RDK Single Band Models (Column Header 1) to Leave-one-

band-out (Column Header 4) Models with Respect to Highest Perfromance and Highest 

Perfromance Drop 

Participant 

 2863 3233 4318 4524 7984 8079 8477 9658 

Rank   
Bands 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 

1 Δ Δ Α Α Θ Β Α Α Α Α Θ Θ Α Α Γ Α 

2 Α Β Δ Θ Δ Θ Δ Δ Γ Β Α Δ Δ Δ Α Δ 

3 Θ Α Γ Β Α Α Θ Β Δ Γ Γ Α Β Θ Β Θ 

4 Β Θ Β Δ Β Δ Β Θ Β Δ Δ Γ Θ Γ Δ Γ 

5 Γ Γ Θ Γ Γ Γ Γ Γ Θ Θ Β Β Γ Β Θ Β 

 

To further investigate the salient features of a simple decision and validate the 

rankings shown in table 4.3, feature importance was extracted using the random forest 

models fit on all 320 features and compared with the feature lists generated by the logistic 

regression and LDA models fit using RFE. Table 4.4 lists the intersection of salient 

features across the logistic regression, LDA, and top 15 features ranked by the random 

forest models for each participant. Table 4.3 and 4.4 are in general agreement with each 

other. For all participants, mean power features from the frequency bands associated with 
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the largest drops in performance are included by the logistic regression and LDA models 

and also in the top 15 features ranked by the random forest model. Across participants 

over half the important alpha band features are associated with the lower-central and 

parietal regions of the brain, which are regions in which the alpha band has been shown to 

be able to discriminate between confidence levels [19]. Similarly, over half the important 

delta and theta band features are also associated with the expected regions of the brain. 

Unfortunately, there does not appear to be any consistency across participants with respect 

to the specific channels selected.  

Table 4.4: Intersection of Salient Features Across LR, LDA, and RF Models for the RDK 

Task 

Participant 

2863 3233 4318 4524 7984 8079 8477 9658 

Cz Δ CP2 Α T8 Θ AF3 Α C6 Α C5 Θ Fz Α O1 Γ 

C1 Δ CPz Α FT9 Θ FPz Α CP2 Α F4 Θ CPz Δ F7 Α 

CP2 Α C1 Δ TP7 Δ FP1 Α F8 Γ P3 Θ P1 Β FC3 Β 

C4 Α Cz Α F3 Θ FP2 Α O1 Γ CP4 Θ C6 Δ POz Γ 

P6 Δ P03 Θ Cz Θ Fz Δ Cz Δ FZ Α  C2 Γ 

Cz Α F5 Γ PO8 Δ FP1 Δ O1 Β P1 Δ  FC5 Β 

 
 C6 Θ AFz Δ  CPz Δ  PO3 Γ 

 
 P1 Α FC1 Δ  CP2 Θ  Cz Β 

 
 C4 Θ   C6 Δ   

    FT10 Γ           

 

A drawback of the models fit using frequency domain information is that they 

require a substantial amount of preprocessing or suffer from reduced performance. Since 

the eventual goal is to field systems capable of inferring operator decision confidence in 

real-world, real time environments, the dependency of these models on preprocessing is 

impractical. Thus, classification using the time series information described in section 

3.6.1.1.1 via a CRNN was also investigated. Each CRNN was trained using the process 
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described in Section 3.6.2.2.4. Models were able to achieve 100% training accuracy after 

approximately 100 epochs. However, models corresponding to the lowest validation loss 

took an average of 21.2 epochs to train. The average time per epoch was 7.6 seconds. 

Performance of the CRNN models is shown in Figure 4.7 to Figure 4.10. Mean results 

across participants are given in Table 4.5. These values indicate that across participants, 

the CRNN did not perform better than random chance.  

Table 4.5: Mean Performance of the CRNN Models for the RDK Task 

Metric Mean 95% Lower CL 95% Upper CL 

BACC 0.534 0.504 0.563 

AUC 0.518 0.483 0.554 

MCC 0.060 0.003 0.118 

Cohen’s Kappa 0.059 0.002 0.116 

The best performing model had a BACC of 0.642, AUC of 0.628, MCC of 0.274, 

and Cohen’s kappa of 0.271, which were the highest values for each metric across 

participants. This model was associated with participant 8477, who also had the overall 

best performing model fit using frequency band information, and was the only model to 

perform at a level above random chance. The worst BACC, MCC, and Cohen’s kappa 

were 0.501, 0.001, and 0.001 respectively and were associated with participant 9658. The 

worst AUC was 0.457 and was associated with participant 8097. For all participants the 

CRNN model performed substantially worse than their best performing model fit using 

frequency band information, with an average decrease in performance of 0.170 for BACC, 

0.179 for AUC, 0.336 for MCC, and 0.327 for Cohen’s kappa. Analysis of the residuals 

did not reveal any patterns of misclassification other than the tendency to predict the 

confident class for the majority of observations. A more thorough hyperparameter search 
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may improve performance. However, it is more likely that number of samples available 

for training isn’t large enough for the network to learn anything meaningful. 

 

Figure 4.7: BACC for the CRNN fit on the RDK Task Data 

  

 

Figure 4.8: AUC for the CRNN fit on the RDK Task Data 
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Figure 4.9: MCC for the CRNN fit on the RDK Task Data 

 

 

Figure 4.10: Cohen’s Kappa for the CRNN fit on the RDK Task Data 
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4.3 Cyber Intruder Alert Testbed Experiment Analysis  

4.3.1 Behavior Results and Analysis 

Initial exploration of the behavioral data began with investigating the descriptive 

statistics given by Table 4.6. The distribution of difficulty across alerts was chosen so that 

a roughly equal number of confident and unconfident responses were obtained. However, 

participants were often more confident (73.33% of responses) than they were unconfident 

(26.67% of responses). Participants were also more confident than they were correct, 

being correct only 48.12% of the time. Reaction times for confident responses were 

slightly longer than for unconfident responses with a mean difference of 61.96ms. 

Similarly, reaction times for correct responses were also slightly longer than for incorrect 

responses with a mean difference of 34.52ms. The number of tool transitions was slightly 

less for confident responses than for unconfident responses with a mean difference of 1 

transition, while tool transitions were roughly the same for correct and incorrect 

responses. Additionally, once a participant became confident, they typically did not lose 

confidence in a later decision as this occurred in only 2% of decisions across participants. 

Similarly, there was only one instance in which a participant changed their answer with 

respect to the Threat versus False alarm alternatives. 
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Table 4.6: Descriptive Statistics for the CIAT Behavioral Data 

  Participant 

Statistic 2863 3233 4318 4524 7984 8079 8477 9658 
Cross-

Participant 

Percent Confident 72.50 75.80 71.70 60.80 70.00 80.80 72.50 82.50 73.33 

Percent Unconfident 27.50 24.20 28.30 39.20 30.00 19.20 27.50 17.50 26.67 

Percent Correct 55.00 55.00 40.00 47.50 47.50 45.80 42.50 51.70 48.12 

Percent Incorrect 45.00 45.00 60.00 52.50 52.50 54.20 57.50 48.30 51.88 

Mean Reaction Time Confident 778.18 846.97 954.74 835.59 979.55 957.21 1129.30 1057.77 942.41 

Std Dev. Reaction Time (ms) Confident 264.61 248.86 341.42 213.14 249.60 227.54 305.96 259.36 263.81 

Mean Reaction Time (ms) Unconfident 744.27 808.28 1001.09 846.77 892.67 925.22 1022.06 803.24 880.45 

Std Dev. Reaction Time (ms) Unconfident 167.86 194.50 406.83 218.90 200.40 338.23 305.72 163.62 249.51 

Mean Reaction Time (ms) Correct 773.41 852.52 1002.17 849.81 969.86 914.10 1151.71 1051.90 945.68 

Std Dev. Reaction Time (ms) Correct 285.25 256.32 372.72 193.26 239.15 338.37 294.60 229.40 276.13 

Mean Reaction Time (ms) Incorrect 763.30 819.41 945.01 831.06 938.67 958.47 1061.45 971.88 911.16 

Std Dev. Reaction Time (ms) Incorrect 176.16 210.68 352.41 233.42 238.38 231.29 314.81 290.35 255.94 

Mean Tool Transitions Confident 1.10 1.47 2.12 1.96 1.96 2.58 1.64 2.33 1.90 

Std Dev. Tool Transitions Confident 1.68 1.58 2.30 1.86 1.38 2.66 1.81 2.29 1.95 

Mean Tool Transitions Unconfident 2.61 2.21 2.91 2.19 1.89 5.43 2.48 3.48 2.90 

Std Dev. Tool Transitions Unconfident 1.69 1.32 1.93 1.78 1.15 2.02 1.10 2.04 1.63 

Mean Tool Transitions Correct 1.03 1.42 2.10 1.89 1.91 5.25 1.73 2.35 2.21 

Std Dev. Tool Transitions Correct 1.59 1.57 2.28 1.83 1.31 1.95 1.95 2.28 1.84 

Mean Tool Transitions Incorrect 2.11 1.93 2.50 2.19 1.97 2.70 1.99 2.72 2.26 

Std Dev. Tool Transitions Incorrect 1.89 1.49 2.19 1.82 1.32 2.74 1.46 2.28 1.90 

4.3.1.1 Decision Confidence Modelling 

To determine whether the query number, difficulty, and number of tool transitions 

had an effect on decision confidence, the data was explored using several visualization 

techniques and then used to fit a GLMM to test for the significance of the predictors. 

Figure 4.11 and 4.12 display violin plots of the number of confident observations versus 

the query number and versus difficulty respectively. A violin plot combines the box plot 

and density trace into a single diagram by plotting the density trace symmetrically to the 

left and right of the box plot [61]. The box plot portion of the diagram displays 

information about the distribution of the data based on five values: minimum, first 

quartile, median, third quartile, and maximum. The central rectangle spans the first 
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quartile to the third quartile known as the interquartile range.  The circle inside the 

rectangle shows the median and the “whiskers” above and below the rectangle show the 

locations of the minimum and maximum. The density trace supplements the box plot by 

showing the distribution shape of the data. Figure 4.11 strongly suggests that query 

number had an effect on confidence. The spread of the interquartile range corresponding 

to query 1 is the largest and does not overlap with the spread for any other query, 

indicating that there is a difference between query 1 and the other queries with respect to 

confidence. The distribution of confidence for query 1 appears uniform with a median of 3 

confident observations. Compared to the violin plots of the other queries, the median for 

query 1 is significantly lower, indicating that more participants were unconfident at the 

first query than for the later queries. The interquartile ranges for queries 2, 3, and 4 all 

overlap. However, the medians of each of these queries do not overlap with the 

interquartile ranges of any other and so there is likely a difference between the queries. 

The distribution for query 2 also appears uniform and has a median value of 6 confident 

observations. When compared to the other queries, it appears that more participants were 

likely to be confident for query 2 than for query 1 and that more participants were likely to 

be unconfident for query 2 than for query 3 and 4. The distribution of data for queries 3 

and 4 is concentrated around most participants being confident indicating that by this 

point, participants were likely to be confident in their decision.  

It is harder to discern a relationship between confidence and difficulty from Figure 

4.12. The interquartile ranges for the different difficulty levels overlap and the distribution 

of data for the easy and hard difficulties and the medium and very hard difficulties are 

very similar to each other. However, the median for the medium and very hard difficulties 
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do not overlap with the interquartile range of the easy and hard difficulty, suggesting that 

there may be a difference between these difficulty levels.  

 
Figure 4. 11: Number of Confident Observations versus Query Number 

 

 
Figure 4.12: Number of Confident Observations versus Difficulty 

Figure 4.13 shows histograms of tool transitions for both the confident and 

unconfident responses. Since there is almost a complete overlap between the two 

distributions, it is unlikely that there is relationship between confidence and the number of 

tool transitions. 
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Figure 4.13: Distribution of Tool Transitions for Confident and Unconfident Responses 

Since confidence is a binary response variable, a mixed effects logistic regression 

model was chosen to test the significance of query number, difficulty, and tool transitions 

while controlling for the individual differences of the participants. The results of the 

logistic regression are shown in Table 4.7 and are in agreement with the data exploration. 

Individual differences in participants accounted for 16.6% of the total variance. Query 

number was significant (p-value = 2e-16), indicating that query number had an effect on 

confidence. The positive coefficients for query number suggests that the probability of 

participants being confident increases with the amount of time they have to gather 

evidence for their decision. Difficulty was also significant (p-value = 1.38e-05). The 

positive coefficient for difficulty suggests that the probability of participants being 

confident increases with the difficulty of the alert. This is an interesting observation as it is 

in contradiction with the results presented by Borneman [2]. Tool transitions was not 

significant (p-value = 0.747) indicating that there is no relation between confidence and 

the number of times a participant switched between tools.  
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Table 4.7: Mixed Effects Logistic Regression Model for Confidence 

Fixed Effects Estimate Std. Error z value Pr(>|z|) 

Intercept -2.40919 0.35993 -6.694 2.18e-11 

Tool Transitions -0.01529 0.04743 -0.322 0.747 

Query Number  1.25574 0.10150 12.371 2e-16 

Difficulty 0.34374 0.07906 4.348 1.38e-05 

Random Effects % of Total Variance    

Participant 14.3    

 

4.3.1.2 Reaction Time Modelling 

The next avenue for behavioral data exploration and analysis was to determine 

whether the query number, difficulty, number of tool transitions, and confidence had an 

effect on reaction time.  Figure 4.14 and 4.15 display violin plots of reaction time in 

milliseconds versus the query number and versus difficulty respectively. The overlap in 

the spread of interquartile ranges between all pairs of queries and small distance between 

medians suggests that it is unlikely that there is a difference in reaction times between the 

queries. However, in the distribution of the data for each query the distributions for the 

earlier queries appear to be denser at lower reaction times than the later queries. The violin 

plots for reaction time versus difficulty are almost indistinguishable, which suggests that it 

is unlikely that difficulty had an effect on reaction time. Figure 4.16 displays histograms 

of reaction times for both the confident and unconfident responses. Since there is almost a 

complete overlap between the two distributions, it is unlikely that confidence had an effect 

on reaction time. Similarly, Figure 4.17 displays reaction time versus number of tool 

transitions. The red trend line resulting from regressing reaction time on tool transitions 

suggests that the number of tool transitions does not have an effect on reaction time. 
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Figure 4.14 : Reaction Time versus Query Number 

 

Figure 4.15 : Reaction Time versus Difficulty 

 

Figure 4.16 : Distribution of Reaction Times for Confident and Unconfident Responses 
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Figure 4.17 : Reaction Time versus Tool Transitions 

 

A linear mixed model was fit to test the significance of query number, difficulty, 

confidence, and tool transitions while controlling for the individual differences of the 

participants. The results of the model are shown in Table 4.8. Individual differences in 

participants accounted for 13.3% of the total variance. None of the coefficients of the 

predictors were significant (p-value > 0.05) suggesting that query number, difficulty, 

confidence, and tool transitions did not have an effect on reaction time. 

Table 4.8 : Linear Mixed Model for Reaction Time 

Fixed Effects Estimate Std. Error z value Pr(>|z|) 

Intercept 868.556 49.970 17.382 0.000 

Query Number 12.014 9.524 1,261 0.207 

Difficulty 1.553 7.818 0.199 0.843 

Confidence 38.870 22.840 1.702 0.089 

Tool Transitions -0.764 4.782 -0.169 0.873 

Random Effects % of Total Variance    

Participant 13.0    
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4.3.1.3 Tool Transitions Modelling 

Figure 4.18 and 4.19 display violin plots of the number of tool transitions versus 

the query number and versus difficulty respectively. From Figure 4.18, it appears that the 

query number may have an effect on the number of tool transitions. The spread of the 

interquartile ranges for all pairs of queries overlap but there is sufficient separation 

between the medians. The distribution of the data suggests that tool transitions are lower 

for later queries. The violin plots for tool transitions versus difficulty are almost 

indistinguishable, which suggests that it is unlikely that difficulty had an effect on tool 

transitions. Similarly, the violin plots shown in Figure 4.20 are consistent with the results 

of the confidence modelling, suggesting that confidence does not have an effect on the 

number of tool transitions. 

 
Figure 4.18: Tool Transitions versus Query Number 
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Figure 4.19 : Tool Transitions Versus Difficulty 

 

 

Figure 4.20: Tool Transitions versus Confidence  

 

Similar to the reaction time modelling, a linear mixed model was fit to test the 

significance of query number, difficulty, and confidence while controlling for the 

individual differences of the participants. The results of the model are shown in Table 4.9. 

Individual differences in participants accounted for 6.8% of the total variance. Query 

number was significant (p-value = 0.000). The negative coefficient suggests that tool 

transitions decreased as query number increased, which is in agreement with the data 

exploration. As expected, neither difficulty or confidence were significant. 
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Table 4.9 : Linear Mixed Model for Tool Transitions 

Fixed Effects Estimate Std. Error z value Pr(>|z|) 

Intercept 4.03612 0.25747 15.676 0.000 

Difficulty -0.01581 0.15471 -0.102 0.919 

Query Number -0.72287 0.06017 -12.014 0.000 

Confidence -0.03891 0.05298 -0.734 0.463 

Random Effects % of Total Variance    

Participant 6.8    

4.3.1.4 Correctness Modelling 

The last relationship investigated was the effect of query number, difficulty and 

number of tool transitions on participant correctness. Figure 4.21 and 4.22 display violin 

plots of the number of correct observations versus the query number and versus difficulty 

respectively. Figure 4.21 suggests that query number may have an effect on correctness. In 

the interquartile range, the spread for all pairs of queries overlap except 1 and 4, but there 

is sufficient separation between all pairs of medians. The distribution of the data suggests 

that participants were more likely to be correct for later queries. Similarly, Figure 4.22 

suggests that difficulty may have had an effect. Looking at interquartile range, it is 

unlikely that there is a difference between the easy and medium or medium and hard 

difficulties. However, it is likely that there is a difference between the easy and very hard 

difficulties, as the distribution of data suggests that participants were more likely to be 

correct when responding to an easy alert than for a very hard alert. Figure 4.23 displays 

histograms of tool transitions for both correct and incorrect responses. Since there is 

almost a complete overlap between the two distributions, it is unlikely that tool transitions 

had an effect on correctness. 
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Figure 4.21: Number of Correct Observations versus Query Number 

  

Figure 4.22 : Number of Correct Observations versus Difficulty 

 

Figure 4.23: Distribution of Tool Transitions for Correct and Incorrect Responses 
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Similar to the confidence model, since correctness is a binary variable, a mixed 

effects logistic regression model was chosen to test the significance of the effects while 

controlling for the individual differences of the participants. The results of the logistic 

regression are shown in Table 4.10. Individual differences in participants accounted for 

1.3% of the total variance. Consistent with observations made during the data 

visualization, query number was significant (p-value = 0.0027), indicating that correctness 

varied with query number. The positive coefficient for query number suggests that the 

probability of a participant being correct increases with the amount of time they have to 

gather evidence for their decision. Difficulty was also significant (p-value = 6.65e-05), 

indicating that correctness varied the difficulty of an alert. The negative coefficient 

indicates that the probability of a participant being correct decreased with the level of 

difficulty of an alert. The number of tool transitions was not significant 

(p-value = 0.3304). 

Table 4.10: Mixed Effects Logistic Regression Model for Correctness 

Fixed Effects Estimate Std. Error z value Pr(>|z|) 

Intercept -0.78620 0.26212 -2.999 0.0027 

Query Number 0.53289 0.6816 7.819 5.34e-15 

Difficulty -0.24459 0.06133 -3.988 6.65e-05 

Tool Transitions -0.03577 0.03675 -0.973 0.3304 

Random Effects % of Total Variance    

Participant 1.3    

 

4.3.2 Event Related Potential Analysis 

No statistically significant results were observed in any of the eight participants. It  

is likely that due to the small number of trials and class imbalance, not enough averaging 

was done to attenuate the noise so that the ERP becomes clear.  
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4.3.3 Classification of Confidence 

The Electrophysiological analysis for the CIAT data was conducted in the same 

manner as for the RDK data. LR, LDA, RF, and fully connected ANN models were 

trained and tested using the mean power features from each of the five traditional EEG 

bands for each of the eight participants, resulting in a total of 32 models that were 

evaluated and compared. Model performance was evaluated using BACC, AUC, MCC, 

and Cohen’s Kappa and the model in which three of the four performance metrics were 

highest was reported as the model with the best performance. Mean results across 

participants are given in Table 4.11. Each performance metric indicates performance fairly 

greater than random chance.  

Table 4.11: Mean Performance of Frequency Band Models for the CIAT Task 

Metric Mean 95% Lower CL 95% Upper CL 

BACC 0.641 0.608 0.673 

AUC 0.635 0.601 0.669 

MCC 0.261 0.200 0.322 

Cohen’s Kappa 0.247 0.184 0.310 

 

The best performing model and the corresponding performance metrics for each 

participant are shown in Figure 4.24 to Figure 4.27. Each of these models exceeded the 

random chance value of 0.5 for BACC and AUC and 0 for MCC and Cohen’s kappa, 

though model performance for most participants was substantially lower than for the RDK 

task with a mean decrease in BACC, AUC, MCC, and Cohen’s kappa of 0.063, 0.062, 

0.135, and 0.139 respectively. However, the best performing models for participants 7984 

and 8079 actually exceeded the performance of their best models for the RDK task. Like 

the RDK task, models fit using a fully connected ANN were consistently the best across 

participants, providing the best performance for six of the eight participants. The RF 
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model provided the best results for the two remaining participants. The highest BACC and 

AUC among the best performing models were 0.729 and 0.716 with 95% CIs [0.696, 

0.762] and [0.682, 0.750] respectively, and were associated with participant 7984’s fully 

connected ANN. The highest MCC and Cohen’s kappa among the best performing models 

were 0.419 and 0.404 with 95% CIs [0.358, 0.48] and [0.341, 0.467] respectively, which 

were also associated with participant 7984’s fully connected ANN. The lowest BACC and 

AUC were 0.576 and 0.538 with 95% CIs [0.543, 0.609] and [0.504, 0.572] respectiviely 

which were both associated with participant 8477’s fully connected ANN. The lowest 

MCC and Cohen’s kappa were 0.142 and 0.106 with 95% CIs [0.081, 0.203] and [0.043, 

0.169] respectively which were also associated with participant 8477’s fully connected 

ANN. 

 

Figure 4.24: BACC for the Best Performing Models on the CIAT Task 
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Figure 4.25: AUC for the Best Performing Models on the CIAT Task 

 

 

Figure 4.26: MCC for the Best Performing Models on the CIAT Task 
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Figure 4.27: Cohen’s Kappa for the Best Performing Models on the CIAT Task 

 

To determine the utility of each frequency band towards classifying decision 

confidence, the same process used for the RDK task data where five single frequency band 

models were fit for each participant and compared against a paradigm where each 

participant’s best performing model architecture was trained and evaluated using the 

frequency information from all but one band was used again. Table 4.12 displays each of 

the single band models compared to the leave-one-band-out models ranked by best 

performance and the largest decrease in performance, respectively. Similar to the RDK 

task, for all participants, models fit using features from all five frequency bands performed 

better than models fit using only individual bands or by leaving out any individual band. 

However, for five of the eight participants, there was no agreement between performance 

of the single band model and the leave-one-band-out model for two participants. This 

suggests that no frequency band provided significantly more utility than any other across 

participants. 
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Table 4.12: Comparison of CIAT Single Band Models (Column Header 1) to Leave one-

band out (Column Header 4) Models with Respect to Highest Perfromance and Highest 

Perfromance Drop 

Participant 

 2863 3233 4318 4524 7984 8079 8477 9658 

Rank   
Bands 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 

1 Δ Θ Δ Β Α Α Γ Γ Θ Α Θ Θ Δ Γ Β Δ 

2 Θ Α Α Θ Δ Β Β Θ Α Θ Β Β Γ Δ Δ Θ 

3 Α Γ Β Α Θ Γ Δ Δ Δ Δ Γ Α Α Α Α Α 

4 Β Δ Θ Δ Β Δ Θ Β Β Β Δ Δ Β Θ Θ Γ 

5 Γ Β Γ Γ Γ Θ Α Α Γ Γ Α Γ Θ Β Γ Β 

 

To further investigate the salient features for the CIAT task, feature importance 

was extracted using the same process as for the RDK data. Table 4.13 lists the features 

that were consistent across the logistic regression, LDA, and top 15 features ranked by the 

random forest models for each participant. For the three participants in which the single 

band model was in agreement with the leave-one-band-out model, features from the 

associated bands were included by the logistic regression and LDA models and also in the 

top 15 features ranked by the random forest model. However, the majority of channels 

selected were not from the expected regions of the brain. There is also no consistency 

across participants with respect to the channels selected. 

Table 4.13: Salient Features Across LR, LDA, and RF Models for the CIAT Task 

Participant 

2863 3233 4318 4524 7984 8079 8477 9658 

CPz Δ CP6 Δ F7 Α P7 Γ C2 Θ T8 Θ AF8 Δ C1 Δ 

Fz Α OZ Δ FC3 Β C6 Γ O1 Θ Fp2 Θ Fp2 Δ TP7 Β 

CP4 Θ C5 Α  T8 Γ F1 Θ  F7 Α AF4 Γ 

   CP3 Δ TP9 Δ  F2 Δ  

   FC6 Β     
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Analysis of the residuals revealed two patterns of misclassification across 

participants. First, models had difficulty inferring confident observations corresponding to 

the first query in an alert and unconfident observations corresponding to the last query in 

an alert. This is likely due to the small number of samples in which participants were 

initially confident in their decisions or unconfident in their final decisions, as confident 

observations corresponding to the first query in an alert comprise only 12.5% of the total 

number of confident observations and unconfident observations corresponding to the final 

query in an alert comprise only 5% of the total number of unconfident observations. 

Second, models had difficulty on observations in which the level of confidence was not 

the same as the previous decision. In other words, models had difficulty with confidence 

inference when there was a transition between levels of confidence. Similar to the 

previous observation, it is possible that this is due to the imbalance in the data with respect 

to decision transitions. Transitions in which confidence does not change represent 75% of 

the total number of decision transitions, whereas transitions in which confidence changes 

represents only 25%. It is also possible that important information encoding confidence, 

especially when there is a transition between levels of confidence, is captured during the 

evidence gathering portion of the task. However, since this information is not incorporated 

during the feature engineering process, the models are unable to learn these patterns. Ways 

to incorporate this information are discussed as future work.  

The results of the behavioral and residual analysis imply that participant 

confidence is strongly tied to the alert query number. This suggests the need to compare to 

a new baseline which better controls for the effect of the query number. To make this 

comparison, two additional model types were fit per participant. The first model type was 
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a fully-connected ANN trained on the query number, which learned to always predict the 

majority class per query. The second model type was also a fully-connected ANN, but 

trained on both the query number and frequency domain EEG features. Both model types 

were tuned in the same manner described in Section 3.6.2.2.3. The performance of these 

models compared to the best performing EEG models are shown in Figures 4.28 to 4.31. 

For five of the eight participants, the query-only model performed noticeably better than 

the corresponding EEG-only model. The boost in performance for these five participants 

can be attributed to the class imbalance with respect to the first query. For these 

participants the data was much more skewed towards the unconfident class, and so these 

models were able to get more unconfident observations correct. For all participants, 

performance of the model trained on both query number and EEG features failed to 

outperform the query only model, performing strictly worse in seven of the eight 

participants. This indicates that the addition of the EEG features does not help improve 

model generalization. Possible reasons for this inability to generalize are similar to those 

discussed for the RDK task. First, it is possible that the hyperparameter search was too 

shallow and that a more careful tuning approach could result in better performance. 

Second, it is possible that there is an issue with the quality of the data. As discussed in 

Section 1.5, a major limitation of this research was that the equipment used to collect the 

electrophysiological data was known to be malfunctioning during the time of the 

experiment. The amount of extra noise introduced into the data due to this problem is 

unknown. Third, the assumption that prominent neural representations of confidence 

manifest at the time of a decision which formed the basis of the feature engineering 
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process may be incorrect. Lastly, it may be that there just isn’t enough data to learn 

important patterns associated with confidence. 

 

Figure 4.28: Comparison of BACC When Controlling for Query  

 

 

Figure 4.29: Comparison of AUC When Controlling for Query 
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Figure 4.30: Comparison of MCC When Controlling for Query 

 

 

Figure 4.31: Comparison of Cohen’s Kappa When Controlling for Query 

 As in the RDK data, classification using the time series features via a CRNN was 

also investigated. Each CRNN was trained using the process described in Section 

3.6.2.2.4. Models were able to achieve 100% training accuracy after an average of 100 
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epochs. However, models corresponding to the lowest validation loss took an average of 

30 epochs to train. The average time per epoch was 6.4 seconds. Performance of the 

CRNN models is shown in Figures 4.32 to 4.35. Mean results across participants are given 

in Table 4.14. 

Table 4.14: Mean Performance of the CRNN Models for the CIAT Task 

Metric Mean 95% Lower CL 95% Upper CL 

BACC 0.530 0.503 0.530 

AUC 0.533 0.497 0.531 

MCC 0.058 0.009 0.058 

Cohen’s Kappa 0.055 0.007 0.055 

The best performing model had a BACC of 0.562, 95% CI [0.548, 0.578], AUC of 

0.564, 95% CI [0.546, 0.582], MCC of 0.116, 95% CI [0.091, 0.140] and Cohen’s kappa 

of 0.113, 95% CI [0.089, 0.139], which were the highest values for each metric across 

participants and were associated with participant 7984. No model performed at a level 

reasonably greater than random chance. The worst BACC and AUC were 0.503, and 0.499 

with 95% CIs [0.490, 0.517] and [0.481, 0.517] respectively and were associated with 

participant 4318. The worst MCC and Cohen’s kappa were 0.007 and 0.006 with 95% CIs 

[-0.017, 0.032] and [-0.017, 0.030] and were associated with participant 2863. For all 

participants the CRNN model performed substantially worse than their best performing 

model fit using frequency band information, with an average decrease in performance of 

0.124 for BACC, 0.119 for AUC, 0.228 for MCC, and 0.215 for Cohen’s kappa. Similar to 

the CRNN fit to the RDK time series data, analysis of the residuals did not reveal any 

patterns of misclassification other than the tendency to predict the confident class for the 

majority of observations. Once again, a more thorough hyperparameter search may 
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improve performance. However, it is more likely that number of samples available for 

training isn’t large enough for the network to learn anything meaningful. 

 

 
Figure 4.32: BACC for the CRNN fit on the CIAT Task Data 

 
Figure 4.33: AUC for the CRNN fit on the RDK Task Data 
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Figure 4.34: MCC for the CRNN fit on the CIAT Task Data 

 

Figure 4.35: Cohen’s Kappa for the CRNN fit on the CIAT Task Data 

 

4.4 Summary 

The objective of this study was to attempt to fill the current research gap of using 

neural and behavioral correlates of decision confidence as features for tackling the 
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problem of confidence inference in both simple and complex decisions using machine 

learning. The analysis and results showed that EEG could be used in combination with 

machine learning to infer confidence in a simple decision with a performance greater than 

chance, but that more research is necessary to evaluate the utility of using EEG to infer 

confidence in the types of decisions made by cyber operators in their operational 

environment. For the RDK task, the mean performance across participants of classification 

models fit using the collected EEG data exceeded random chance with respect to four 

performance metrics. In addition, mean power in the alpha band was identified as the most 

important feature in half the participants. For the CIAT task, it was expected that 

participant reaction time and information seeking behaviors would be related to 

confidence and thus be suitable features for machine learning. However, the statistical 

analysis showed that these behaviors were not significant when accounting for when a 

participant was queried for a decision and the alert difficulty. The addition of EEG 

features was also observed to provide little utility when compared to a naïve model which 

always predicts the majority class per query.   
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V. Conclusions and Recommendations 

5.1 Conclusions of Research 

This study was successful in its objective of investigating the use of neural and 

behavioral correlates of decision confidence in combination with machine learning 

techniques to infer confidence in a simple decision as well as investigating whether the 

results extended to more complex decisions similar to those made by cyber defense 

operators. In order to achieve this goal, a two-task human-subject experiment was 

designed in which electrophysiological and behavioral data was recorded and analyzed.  

The first research question posed in this work investigated if electrophysiological 

features could be used in combination with machine learning techniques to infer decision 

confidence in simple decisions with a performance greater than chance. EEG data was 

collected from a motion discrimination task in which participants had to decide whether 

the global direction of dot motion for each RDK stimulus was to the left or to the right. As 

hypothesized, machine learning models were able to learn neural correlates of decision 

confidence from frequency domain representations of the EEG data. The best performing 

models achieved a performance greater than random chance with respect to four 

performance metrics for all participants. Fully-connected ANNs typically had the best 

performance, ranking as the top model for seven out of eight participants. Models 

exceeded the baseline BACC and AUC of 0.50 with a mean BACC of 0.704 and mean 

AUC of 0.697 and exceeded the baseline MCC and Cohen’s kappa of 0 with a mean MCC 

of 0.399 and mean Cohen’s kappa of 0.386.  
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The second research question sought to determine the important features for 

decision confidence classification in a simple decision. Results of the analysis in which 

five single frequency band models were fit for each participant and compared against a 

paradigm where each participant’s best performing model architecture was trained and 

evaluated using the frequency information from all but one band suggest that the alpha 

band features were most important as the models were in agreement in half the 

participants. To investigate spatial importance with respect to the individual frequency 

bands, feature importance as determined by recursive feature elimination and random 

forest feature importance were examined. The features selected by these algorithms 

provide further support for the importance of individual frequency bands, however there 

was no consistency with respect to channels across participants, demonstrating that spatial 

importance varied with participant. 

The third research question investigated the relationship between participant 

behaviors and decision confidence. It was hypothesized that reaction time and information 

seeking behaviors would be useful features for decision confidence classification. 

However, when accounting for the query number and difficulty, it was observed that 

across participants, no relationship existed between reaction time, tool transitions, and 

decision confidence. These results suggest there is no utility in using these behaviors as 

features for classification of decision confidence. 

The final research question investigated whether the answers to the previous three 

questions extend to the complex decisions made by cyber defense operators in their 

operational environment. Once again, the best performing models achieved a performance 

greater than random chance with respect to four performance metrics for all participants, 
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though performance was typically worse than for the RDK task. However, when 

controlling for the effect of the query number by comparing against a naïve model which 

always predicts the majority class per query, the addition of EEG did not improve results. 

Additionally, whereas alpha band features were determined to be the most important for 

the RDK task, no frequency band provided significantly more utility than any other across 

participants for the CIAT task. Similar to the RDK task, no consistency was observed with 

respect to channels across participants, demonstrating that spatial importance varied with 

participant. 

5.2 Significance of Research 

Current research on decision confidence inference from electrophysiological data 

has focused solely on decisions which meet the assumptions of the drift-diffusion model 

[5]. However, in the cyber operational environment, the decisions made by cyber 

operators as they investigate potential threats do not meet these assumptions. This work 

augmented existing studies on confidence inference from EEG signals by exploring the 

use of more flexible machine learning models such as the random forest classifier and 

fully-connected ANN, and was the first to apply these techniques to decision confidence 

inference in a motion coherence task using RDKs. Though inconclusive, this work is also 

the first to investigate decision confidence inference using machine learning models 

trained on EEG signals collected from decisions similar to those made in the cyber 

operational environment. The performance evaluation of the machine learning models fit 

using the CIAT data serves as a reminder that a blind reliance on common performance 

metrics can inflate results. 
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5.3 Recommendations for Future Research 

Many avenues exist in which the problem of decision confidence inference could 

be further explored and involve either additional analysis of the data collected during this 

study or modification of the experimental design to facilitate new data collection. Several 

of those avenues are recommended in this section.  

5.3.1 CIAT Data Segmentation 

In this study only one form of data segmentation was utilized to label and 

transform the raw EEG data into features suitable for machine learning. The method of 

data segmentation assumed that confidence is reflected in the EEG data between just 

before the decision query up until the decision submission, and that all time points falling 

in this window reflect the same confidence level. A major disadvantage to this method is 

that it ignores the data collected during the investigative portion of the task, which 

accounts for 80% of the total data. The reason for ignoring this data is that it is difficult to 

label it without additional reported confidence information obtained from participant 

responses. Any incorrect labelling effectively amounts to introducing noise into the model 

fitting process. However, it is likely that there are patterns associated with confidence in 

this data that were not represented in the data the was utilized. One avenue for 

incorporating the unused data is to segment the data using a non-stimulus aligned 

approach. A possible implementation would be to label data segments prior to a decision 

with the confidence level for that decision. Mislabeling of data could then be reduced by 

only retaining data segments in which confidence levels did not change between decisions. 
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5.3.2 Machine Learning Improvements 

5.3.2.1 Dimensionality Reduction 

As mentioned in IV, the problem of having high-dimensional data and a small 

number of observations, known as the curse of dimensionality, may have impacted 

classifier performance. Future work should investigate dimensionality reduction 

techniques to reduce the number of features used for model fitting. In particular, the use of 

Principal Component Analysis (PCA) should be explored. PCA finds a low-dimensional 

representation of a data set that contains as much of the variation as possible [25]. It does 

so by transforming the set of features into a set of linearly uncorrelated variables known as 

principle components. The first principle component accounts for the largest amount of 

variance in the training set, and each succeeding component accounts the largest amount 

of remaining variance. Thus using PCA, the set of 320 features used in this research can 

be reduced to the top N principle components, potentially lowering the impact of the curse 

of dimensionality along with model capacity. 

5.3.2.2 Group Modelling 

This research considered only single-participant models that were fit solely on data 

from the participant being modeled and not data from other participants. Since these 

models are tuned to the specific individual, a separate model must be trained for each new 

individual. This requirement is both resource intensive and computationally expensive, 

and may be impractical for inferring decision confidence in real-world operational 

environments. Future work should investigate the performance of group modelling, where 

data from a set of individuals is used for model training and the models are later used to 
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infer confidence in decisions made by those individuals or potentially new individuals. 

One possible implementation of a group model for the experiment data collected in this 

research would be to use a nested cross validation where the outer cross validation loop 

leaves one participant out and the inner loop trains a model using leave-one-out cross 

validation (LOOCV) on the remaining seven participants. This process would provide 

some insight towards the generalization performance of a group model, but would not be 

informative over hyperparameter selection. 

5.3.2.3 Feature Importance Analysis 

It was shown that fully-connected ANNs consistently produced the best results 

across participants for both tasks. However, ANNs offer little in terms of explanatory 

insight into the importance of features used during the prediction process. In this study, 

importance of the individual frequency bands was estimated by excluding individual 

frequency bands from the input, and then training and testing the ANN. The most 

important bands were taken as those that resulted in the biggest decline in classification 

performance when excluded. However, this method did not take the specific channels into 

account and so channel importance had to be investigated using models that were not 

directly comparable. Several methods exist which can be used to better estimate feature 

importance. In particular, the connection weights method [62] should be investigated and 

compared with the results of this study. This method calculates variable importance as the 

product of the raw input-hidden and hidden-output connection weights between each input 

and output neuron and sums the product across all hidden neurons. It has been shown to be 
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the best methodology for accurately quantifying variable importance when compared to 

other published methods [63]. 

5.3.3   ECG and EOG Analysis 

While EOG and ECG data was recorded, these signals were not analyzed in this 

work. Future research should investigate the utility of using these signals as features as 

results obtained by Shih et al. suggest that incorporating them can improve classification 

performance when compared to models fit using only EEG data [27]. 

5.3.4 Experimental Design Changes 

In order to increase the number of observations, the CIAT experiment was 

modified to query participants for a decision at regular intervals. Unfortunately, this query 

system had the unintended effect of introducing a large class imbalance with respect to the 

individual queries. Participants were typically unconfident at the time of the first query 

and confident at the time of the last. Future work should investigate ways to increase the 

number of observations without having to query participants for decisions. A potential 

solution would be to rework the alerts such that each alert could be accomplished in a 

shorter amount of time and then increase the number of alerts. 

The experimental design in this study modelled decision confidence as a binary 

response variable. However, since decision confidence reflects an estimate of the 

probability that the decision is correct it can also be modelled as an ordinal variable with 

more than two levels or as a continuous response variable. By changing the way in which 

the confidence response variable is modelled, the problem of decision confidence 

inference could be explored as either a multiclass classification or regression analysis 
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respectively. In order to change the data type of the confidence response variable, some 

changes need to be made to both the RDK and CIAT experiment interfaces. First, the “I 

Don’t Know” option must be removed from the decision prompt for both tasks. Then, a 

new prompt which asks participants how confident they are in their decision should be 

inserted immediately after the last prompt. For the multiclass problem, this new prompt 

would have participants submit their confidence as one of several discrete levels such as 

“Not Confident”, “Confident”, and “Very Confident”. For the regression problem, a 

confidence slider such as the one used by Borneman [2] can be implemented. 
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Appendices 

Appendix A: Pre-Experiment Questionnaire
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Appendix B: Post-Experiment Questionnaire 
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Appendix C: General Cyber Alert Investigation Workflow Handout 
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